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Abstract

We address the use of pre-trained primitive-shape detec-
tors for identifying embedded codes in imperceptible struc-
tured light (ISL) sensing. The accuracy of the whole sens-
ing system is determined by the performance of such de-
tectors. In training-based methods, generalization of the
training results is often an issue, and it is especially so
when the work scenario could have substantial variation
between the training stage and the operation stage. This pa-
per presents sensitivity evaluation results of embedded code
detection in ISL sensing, together with the associated sta-
tistical analysis. They show that the scheme of embedding
imperceptible codes into normal video projection can be
maintained effective despite possible variations on sensing
distance, projection-surface orientation, projection-surface
shape, projection-surface texture and hardware configura-
tion. The finding indicates the feasibility of integrating the
ISL method into robotic systems for operation over a wide
domain of circumstances.

1. Introduction

Vision sensing has been widely applied in the area of
robotics, such as visual SLAM, measurement, human robot
interaction and visual servo. The improving performance
and declining price of micro / pico projectors make it pos-
sible to use them on the robots. Assisted with cameras,
projector-camera systems (PROCAMS) have emerged in
many robotic platforms [7, 6, 8] for augmented reality (AR),
human-robot interaction (HRI) and some other applications.

The adoption of structured light illumination has been
proven to be an effective and accurate visual means for 3D
reconstruction. With the help of 3D information, it is more
accurate and efficient for robot to understand surrounding
environment and to interact with human users. If some
structured patterns could be embedded into normal video
projection nonintrusively and imperceptibly, the projector
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could serve as both a display device to show vivid video
content and a 3D sensor to derive the 3D information of the
objects near it. This leads to the concept of Imperceptible
Structured Light (ISL) [10].

In ISL, code embedded images and their complements
were projected temporally in high frequency. Due to limi-
tation of human visual perception, the embedded code pat-
terns can be made undetectable to the user, but cameras syn-
chronized to the modulation are able to reconstruct the em-
bedded codes for structured light sensing. Many researcher
focused on how to determine the embedded intensity prop-
erly to guarantee the code imperceptibility [2, 3, 1]. How-
ever, few works focus on the decoding method in impercep-
tible code embedding configuration, especially when huge
external noises exist.

In our previous work [4, 5], we proposed a novel ap-
proach to resolve the conflict between imperceptibility of
the embedded codes and the robustness of code retrieval.
We introduced noise-tolerant schemes to both the coding
and decoding stages. At the coding end, specifically de-
signed primitive shapes (cross, rhombus and sandglass) and
large Hamming distance are employed to enhance tolerance
toward noise. At the decoding end, pre-trained primitive
shape detectors are used to detect and identify the embed-
ded codes — a task difficult to achieve by segmentation that
is used in general structured light methods, for the weakly
embedded information is generally interfered by substan-
tial noise. Extensive experiments including evaluations of
both code imperceptibility and decoding accuracy show the
effectiveness of the proposed system. Some applications
in robotics, including sensing surrounding environment and
touch-based human robot interaction on projection plane
surface, were also illustrated in [4].

It is obvious that the performance of this method depend-
s on the accuracy of pre-trained primitive shape detectors,
which is determined by the training process to a great exten-
t. Generally, for the training based methods, generalization
of the training results is an issue, especially, when the sce-
narios between training stage and operation stage are quite
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different. For applications on robotics, due to the differ-
ent sensor-object localization, different projection surfaces,
different surrounding environment and different hardware
platforms, the generalization of the pre-trained detector is
of great importance, since it is impractical even impossible
to re-train the detector for different scenarios.

This paper aims at certifying the validity of our previ-
ous work in different robotic applications by evaluating the
the sensitivity of primitive detectors under different circum-
stances, including variations on sensing distance, projection
surface orientation, projection surface shape, projection sur-
face texture and hardware configuration.

The remainder of this paper is structured as follows.
In the next section, the hardware configuration of two
projector-camera systems for evaluation is described. In
Section 3, the benchmark of evaluation is depicted. The
sensitivity analyses for primitive detectors under differen-
t circumstances are detailed in Section 4. Conclusion are
offered in Section 5.

2. System Setup

In order to evaluate the performance of primitive shape
detector in different platforms, we set up two projector-
camera systems using different equipments. The first one
(PROCAMS-A) consisted of a consumer-level DLP projec-
tor (Mitsubishi EX240U projector) of 1024 x 768 resolu-
tion and 120H z refresh rate, and a CMOS camera (Point
Grey Flea 3 FL3-U3-13S2C with Myutron FV1520 f15mm
lens) of 1328 x 1048 resolution and 120 fps. While the
second one (PROCAMS-B) consisted of a Pico DLP projec-
tor with a native resolution of 640 x 480 and an interface
for firmware configuration (TT DLP Pico Projector Devel-
opment Kit 2), plus a CCD camera of 648 x 488 resolution at
120 fps (Point Grey FL3-FW-03S1C camera with Myutron
FV0622 féomm lens).

For PROCAMS-A, we first fixed the camera and projec-
tor rigidly, and the projector and camera were connected to
a desktop computer through VGA and USB3.0 interfaces
respectively. Since there was no synchronization signal
output in the consumer-level projector, the synchronization
between projectors and cameras was implemented through
software delay. The hardware configuration is shown in
Fig. 1(a). For PROCAMS-B, the projector and camera were
mounted on a special designed framework rigidly, and were
connected to a laptop computer through HDMI and IEEE-
1394 interfaces respectively, and the hardware trigger sig-
nal of the camera was connected to the sync. output of the
projector for synchronization between them, which are il-
lustrated in Fig. 1(b).

Moreover, the projector-camera systems were calibrated
using an LCD monitor as the calibration object; the cali-
bration method, detailed in [11], could derive the intrinsic
and extrinsic parameters of the two instruments. Once the
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Figure 1. Hardware configuration of two projector-camera system-
S.

experimental system was set up and calibrated, we could
conduct further experiments.

3. Benchmark

As described in [4], in decoding stage, to resolve the
low signal-to-noise ratio problem, we regard the primitive
shapes as objects to "identify” and “detect” rather than ”seg-
ment”. The primitive shape detectors were trained through
the approach proposed in [9] for its capability of processing
images rapidly with high detection rates.

To collect the training samples, 500 color images with d-
ifferent contents were collected from Google Image, and 40
primitive shapes were embedded in those images at differ-
ent positions to generate 500 pairs of projected images and
complementary images. By projecting them to a white pla-
nar projection screen with small orientation variations, 500
subtraction images could be derived from image capture ex-
ercises. The sub-images containing primitive shapes were
were considered as positive training samples. The back-
ground were divided into small patches to generate negative
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training samples. More detailed training procedures can be
found in [4].

Another 500 color images were collected, through
embedding-projection-capture cycle, 500 subtraction im-
ages for detector accuracy evaluation were generated. The
ground-truth was obtained by manual labeling in the image
data captured under binary pattern illumination. The sce-
nario of testing sample generation was the same as training
sample collection stage. Thus, this test results are consid-
ered as the benchmark for the sensitivity analysis in the nex-
t step. The performance of primitive detector are evaluated
by hit rate (), missing rate (M), false rate (F') and position
error (F4), which are formulated as
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where N, is the total embedded primitive shape number,
Np, Ny, and Ny are the number of correct detections,
missed detections and false detections respectively. ex and
ey are the average feature point detection errors along the x-
axis and y-axis, (Xg4,Yy) and (X4, Y,) are the detected co-
ordinate and ground-truth respectively. Qualitative results
in some subtraction images ! are presented in Fig. 2. The
more detailed quantitative testing results are listed in Table
1. It is clear that the primitive shape detectors have excel-
lent performance when the environment of operation stage
is the same as that of training stage.
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Figure 2. Some qualitative benchmark results.

T All the subtraction images in this article are scaled to [0, 255] for
illustration purpose.

H(%) M%) F(%) Eq(pixel)
C 9453 395 152 1632
R 9521 359 120  1.833
S 9550 3.63 087 1542

Table 1. Benchmark for sensitivity evaluation.

4. Sensitivity Analysis

From the benchmark testing in Section 3, about 95%
primitive shapes can be detected and identified correctly by
pre-trained detectors, when the scenarios of training stage
and operation stage are almost the same. For the applica-
tions in robotics, especially for mobile robot, it is impos-
sible to have an operation circumstance that is the same as
training stage. Therefore, the sensitivity and generalization
of the pre-trained detector under different circumstances are
of great importance for the performance of whole sensing
system. In this section, a series sensitivity analysis will be
conducted when some environmental factors are changed.

4.1. Working Distance

The working distance is the average distance from the
projector-camera system to the object surface. When the in-
trinsic parameters of the projector and camera (focal length
and resolution) are fixed, the size of the primitive shapes
in subtraction image is determined by the working distance
directly. In the configuration of training stage, the work-
ing distance is set as 800mm, the size of primitive shapes
in image data is about 20 pixels. In the operation stage,
the working distance is changed to 500mm, 1200mm and
1600mm, the focal length of procams is slightly adjusted
to get sharp projection and clear capture. Some subtraction
images with detection results are shown in Fig. 3, the size
of the primitive shapes are around 15, 35 and 45 pixels re-
spectively.

The detailed quantitative results are listed in Table 2. Itis
clear that when the working distance decreased to 500mm,
the hit rates dropped, because it is difficult for primitive
shape detectors to find small size shapes in image data. For
the enlarged shapes in larger working distance, the perfor-
mance of detectors are almost the same as the benchmark.

4.2. Projection Surface Orientation

Besides the size of the primitive shapes in image data,
the distortions will also influence the performance of the
pre-trained detectors. The distortions mainly come from
the variations on the orientation of the projection surface
w.r.t. the sensing system and the variations on the shape of
the projection surface. First, the detector accuracy will be
evaluated under different projection surface orientations.

In training data collection stage, the images are projected
to a planar surface that is almost parallel to the image plane
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(b) 1200mm
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Figure 3. Cross shape detection in different working distances.

Distance | Pri. H(%) M(%) FE(%) Eq(pixel)
C 8621 1163 216 1814
500mm | R 85.83 1257 160  1.836
S 8749 11.64 087 1712
C 9444 432 124 1728
1200mm | R 9486 423 091  1.904
S 9449 462 089 1572
C 9452 411 137 1731
1600mm | R 9506 3.92 1.02 1910
S 9539 368 093 1591

Table 2. Primitive shape detection accuracy in different working
distance.

of the camera. Now in operation stage, the orientation of
the surface is adjusted to 10°, 20°, 30°, 40°, 50° in yaw
direction, as shown in Fig. 4. In each sub-image, the upper
part is the captured image to show the extent of distortion,
while the lower part is the magnified subtraction image of
the subregion indicated by the rectangle in captured image.
The detection results are also shown in the subtraction im-
ages. More detailed quantitative results are listed in Table 3.

In the testing results, when the rotation degree 6 is small,
i.e.,, 8 = 10°,20°, the performance is almost the same as
benchmark. With the increase of the rotation degree, the
hit rates decrease slightly. When 6 = 50°, more than 85%
primitive shapes are still detected correctly, which satisfies
the application requirements [4].

4.3. Projection Surface Shape

The alteration of projection surface shape will also re-
sult in the distortion of primitive shapes in image data. In
training stage, the negative and positive sample were col-
lected from the images projected to a planar surface. In this
test, the projection surface are three different non-planar
surfaces (convex paper, concave paper and plaster statue).
Some test images and the statistical results are shown in
Fig. 5 and Table 4 respectively. In all three surfaces, al-
though the hit rates have small decrease, it is still sufficient
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(e) 50°
Figure 4. Rhombus shape detection in the projection surface with
different orientations.

Orientation \ Pri. H(%) M(%) F(%) FE4(pixel)
C 9451 3.96 1.53 1.635
10° R 95.08 3.60 1.22 1.845
S 9546 374 0.80 1.544
C 94.50 3.96 1.54 1.634
20° R 95.08 3.64 1.08 1.848
S 9543 377 0.80 1.564
C 93.47 450 203 1.938
30° R 92.15 6.37 1.48 2.141
S 9243 6.78 0.79 2.011
C 90.19 7.70 2.11 2.414
40° R 8942 950 1.08 2.809
S 91.23 7.87 090 2.374
C 86.21 11.63 2.16 2.728
50° R 85.83 12,57 1.60 2.904
S 86.87 12.27 0.86 2.572

Table 3. Primitive shape detection accuracy in projection surface
with different orientations.
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Surface Pri. H(%) M(%) F(%) FEi(pixel)
C 93.53 4.86 1.61 1.756
Convex R 9325 529 1.46 2.043
S 94.14 4.85 1.01 2.122
C 93.64 4.84 1.52 1.762
Concave R 93.82 4.70 1.48 2.108
S 93.76 541 0.83 2.135
C 84.81 13.33 1.86 2.028
Free-Form | R 8573 13.06 1.21 1.904
S 86.09 13.03 0.88 2.075

Table 4. Primitive shape detection accuracy in projection surface
with different shapes.

to derive correct correspondences for triangulation. In the
plaster statue case, the missing detections are mainly found
in the regions where the surface has sudden change.
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(c) Plaster Statue

Figure 5. Cross shape detection in different projection surfaces.

4.4. Projection Surface Texture

The texture on the projection surface will affect the qual-
ity of captured images. In the benchmark training stage, the
projection surface is textless and in white color. In the op-
eration stage for test, the images are projected to a planar
surface in green color, a cork board and a poster with text
and images, as illustrated in Fig. 6. The quantitative results
are listed in Table 5. The results indicate that the texture
variation on the projection surface has little influence on
the performance of primitive shape detectors, since in our

Texture Pri. H(%) M(%) F(%) FEi(pixel)
C 9441 4.17 1.42 1.634
Green Paper | R 95.19 3.66 1.15 1.836
S 9549 3.63 0.88 1.558
C 9341 5.07 1.52 1.641
Cork Board | R 9425 443 1.32 1.850
S 9492 416 0.92 1.623
C 91.74  6.63 1.63 2.024
Poster R 90.28 8.25 1.47 1.996
S 92.19 6.76 1.05 1.762

Table 5. Primitive shape detection accuracy in projection surface
with different textures.

method [5] the decoding process was conducted in subtrac-
tion image, which would weaken the texture influence to a
certain extent.
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Figure 6. Sandglass shape detection in different projection surface
textures.

4.5. Projector-Camera System

If the pre-trained detectors are used in another robot
systems with different hardware configuration, the perfor-
mance of the detectors would be affected, since the differ-
ences in the resolution of projector and camera (high vs.
low), the camera sensor (CCD vs. CMOS) and the optical
parameters (different lens) will change the appearance of
the primitive shape in image data. In this test, the primitive
detectors trained by the data collected from PROCAMS-A
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are applied in PROCAMS-B during the operation stage.

Due to the low projector resolution in PROCAMS-B, the
dimension of the original pattern image is too large for em-
bedding, so we employ two method to solve this issue, the
first one is to select a sub-region of the original pattern im-
age as a new pattern image and the second one is to resize
the original pattern image to coincide the projector resolu-
tion. Some detection results in the subtraction images de-
rived from two different embedding methods are illustrated
in Fig. 7(b) and 7(c). The quantitative results are also shown
in Table 6.

Compared with the benchmark, it is obvious that the per-
formance in PROCAMS-B degrades intensively, especially
in the resized pattern case. By analyzing the missed and
false detection cases, we find that the mistakes were mainly
caused by large noise from the low luminance of the pico
projector and the extremely small primitive shapes in image
data.

(b) Cropped Pattern

(c) Resized Pattern

Figure 7. Primitive shape detection in PROCAMS-B with different
embedding approaches.

5. Conclusion

We have presented sensitivity evaluation results of em-
bedded code detection in imperceptible structured light
sensing, together with the statistical analysis. They show
that embedding imperceptible codes into normal video pro-
jection can be made effective even though there could be
variations on sensing distance, projection-surface orienta-
tion, projection-surface shape, projection-surface texture

Pri. H(%) M%) F(%) Eq(pixel)
C 80.23 1443 534 3.028
Cropped Pat. | R 7993  14.17 5.92 2.981
S 81.09 13.28 5.63 2.812
C 30.52 59.23 10.25 2.628
Resized Pat. | R 30.63 58.03 11.34 2913
S 30.80 5793 11.27 2.874

Table 6. Primitive shape detection accuracy in PROCAMS-B with
different embedding approaches.

and hardware configuration. Our future work will be about
extending imperceptible structured light sensing to a variety
of robotic applications.
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