Sensitivity Evaluation of Embedded Code Detection in Imperceptible Structured Light Sensing

Jingwen Dai Ronald Chung
Computer Vision Laboratory
Dept. of Mech. and Automation Engineering
The Chinese University of Hong Kong

WoRV2013, Clearwater, FL, USA, 16 Jan 2013
Introduction & Motivation

- Projector-Camera Systems in Robotics
 - Augmented Reality
 - Human-Robot Interaction
 - Some Other Applications

- Imperceptible Structured Light Sensing (ISL)

Display Device

Show Video Content

3D Sensor

Derive the 3D information
Introduction & Motivation

Coding

- specifically designed shapes
- large hamming distance

Decoding

- Pre-trained shape detector
Robotic Applications – Sensing Surrounding Environment

Robotic Applications –
Natural Human-Robot Interaction

Sensitivity Evaluation

Training Stage

Operation Stage

Scenarios

Differences

Sensor-Object Localization

Projection Surfaces

Surrounding Environment

Hardware Platforms
System Setup

PROCAMS-A

PROCAMS-B
Hardware Configuration

<table>
<thead>
<tr>
<th></th>
<th>PROCAMS-A</th>
<th>PROCAMS-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projector</td>
<td>Mitsubishi EX240U Projector 1024 * 768</td>
<td>TI DLP Pico Projector Development Kit 2 640 * 480</td>
</tr>
<tr>
<td>Camera</td>
<td>Point Grey Flea3 FL3-U3-13S2C 1328 * 1048@120fps</td>
<td>Point Grey Flea3 FL3-FW-03S1C 648 * 488@120fps</td>
</tr>
<tr>
<td>Lens</td>
<td>Myutron FV1520 f15mm</td>
<td>Myutron FV0622 f6mm lens</td>
</tr>
<tr>
<td>Pro-PC</td>
<td>VGA</td>
<td>HDMI</td>
</tr>
<tr>
<td>Cam-PC</td>
<td>IEEE-1394</td>
<td>USB 3.0</td>
</tr>
<tr>
<td>Distance</td>
<td>800mm</td>
<td>500mm</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Orientation</td>
<td>0°</td>
<td>10°</td>
</tr>
<tr>
<td>Orientation</td>
<td>40°</td>
<td>50°</td>
</tr>
<tr>
<td>Shape</td>
<td>Planar</td>
<td>Convex</td>
</tr>
<tr>
<td>Texture</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>PROCAMS</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

When the scenarios of **training stage** and **operation stage** are almost the same, about **95%** primitive shapes can be detected and identified correctly.
Sensitivity Evaluation: Working Distance

In training data collection: Working Distance: 800mm

500mm 1200mm 1600mm
Sensitivity Evaluation: Projection Surface Orientation

In training data collection: Surface Orientation: $\theta = 0^\circ$

$\theta = 10^\circ$ $\theta = 20^\circ$ $\theta = 30^\circ$ $\theta = 40^\circ$ $\theta = 50^\circ$
Sensitivity Evaluation: Projection Surface Shape

In training data collection: Projection Surface: **Planar**

Convex Surface Concave Surface Plaster Statue
Sensitivity Evaluation: Projection Surface Texture

In training data collection: Surface Texture: White Paper

Green Paper Cork Board Poster
Sensitivity Evaluation: PROCAMS

In training data collection:
PROCAMS: PROCAMS-A

Captured Image

Cropped Patt.

Resized Patt.
Sensitivity Evaluation: Conclusion

<table>
<thead>
<tr>
<th>Condition</th>
<th>Hits (%)</th>
<th>Missed (%)</th>
<th>False (%)</th>
<th>Ed (pixel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>94.53</td>
<td>3.95</td>
<td>1.52</td>
<td>1.632</td>
</tr>
<tr>
<td>Distance (500mm)</td>
<td>86.21</td>
<td>11.63</td>
<td>2.16</td>
<td>1.814</td>
</tr>
<tr>
<td>Orientation (50 degree)</td>
<td>85.91</td>
<td>12.03</td>
<td>2.06</td>
<td>2.728</td>
</tr>
<tr>
<td>Surface (Plaster Statue)</td>
<td>84.81</td>
<td>13.33</td>
<td>1.86</td>
<td>2.028</td>
</tr>
<tr>
<td>Texture (Poster)</td>
<td>91.74</td>
<td>6.63</td>
<td>1.63</td>
<td>2.024</td>
</tr>
<tr>
<td>PROCAMS (Cropped Pattern)</td>
<td>80.23</td>
<td>14.43</td>
<td>5.34</td>
<td>3.028</td>
</tr>
</tbody>
</table>

For more detailed sensitivity evaluation results, please refer to the paper.
Conclusion and Future Works

Sensitivity evaluation of embedded code detection in imperceptible structured light sensing.

Future Works

- Extending imperceptible structured light sensing to a variety of robotic applications.
THANK YOU!!

If you have any questions, please contact

Dr. Jingwen Dai

dai@cs.unc.edu