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Touchscreen Everywhere:
On Transferring a Normal Planar Surface to a

Touch-Sensitive Display
Jingwen Dai, Member, IEEE, and Chi-Kit Ronald Chung, Senior Member, IEEE

Abstract—We address how a human-computer interface with
small device size, large display, and touch-input facility can be
made possible by a mere projector and camera. The realization is
through the use of a properly embedded structured light sensing
scheme that enables a regular light-colored table surface to serve
the dual roles of both a projection screen and a touch-sensitive
display surface. A random binary pattern is employed to code
structured light in pixel accuracy, which is embedded into the
regular projection display in a way that the user perceives only
regular display but not the structured pattern hidden in the
display. With the projection display on the table surface being
imaged by a camera, the observed image data, plus the known
projection content, can work together to probe the 3-D workspace
immediately above the table surface, like deciding if there is a
finger present and if the finger touches the table surface, and if
so, at what position on the table surface the contact is made. All
the decisions hinge upon a careful calibration of the projector-
camera-table surface system, intelligent segmentation of the hand
in the image data, and exploitation of the homography mapping
existing between the projector’s display panel and the camera’s
image plane. Extensive experimentation including evaluation of
the display quality, hand segmentation accuracy, touch detection
accuracy, trajectory tracking accuracy, multitouch capability and
system efficiency are shown to illustrate the feasibility of the
proposed realization.

Index Terms—Accuracy evaluation, hand segmentation, ho-
mography, imperceptible structured light embedding, touch de-
tection, touch-sensitive display.

I. Introduction

HUMAN-COMPUTER interface (HCI) has been travers-
ing from firstly punch card and LEDs, then paper tape

and CRO display, more recently mouse-plus-keyboard and
LCD panel, and now fingers and touch-sensitive display panel
over the history of development. Technologies have been ever
improving, with the data-input mechanism growing only more
natural, and the display only more vivid. Indeed for the input-
output interface of computers, scarcely anything could be more
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natural than using our fingers to drag items on the virtual
desktop of the computer, to open (and move and copy) files
and folders, and to scroll (and enlarge) pages.

In today’s computers and other portable devices like cellular
phones and PDAs, a large display panel is desired not only for
enhancing display quality and coping with say aged vision,
it is also essential, for touch input interface, for allowing
finger—a rather bulky pointing device—to specify position on
the virtual desktop in adequate precision. On that there is the
following dilemma. A bigger and higher-resolution display,
and a bigger keyboard, are desired to incur less strain on
eyes and fingers. Yet they also make the devices less portable.
This article attempts to solve this dilemma by exploring the
possibility of replacing the display panel and the mouse-and-
keyboard by a mere projector and camera. Specifically, it is to
enable a light-colored table surface, on which the projection
is illuminated, to serve as a touch-sensitive display panel for
finger-based user input. The use of a projector in place of an
LCD panel would dissociate display size from device size,
making portability much less an issue. Touch-sensitive input
facility on such a large display would also alleviate the need
of a large keyboard.

The challenge is, from a single image alone there is gener-
ally difficulty in even distinguishing whether there is a physical
contact between the finger and the table surface. The facility
of acquiring certain 3-D information about the illuminated
workspace would be of much aid. A desirable way of making
that possible is to use no additional sensor or instrument
beyond what are already there—the projector and camera—
by embedding structured codes into the projection. This way,
the projector serves two purposes: the display device, as well
as the 3-D acquisition channel.

This paper aims at building the stated system, letting any
tabletop surface to which the projection is illuminated become
a touch-sensitive computer screen, with the entire system
requiring a mere video projector and camera.

II. Related Work

Traditional HCI is largely mouse and keyboard based, which
is effective but not necessarily the most natural. Tangible
interfaces have been used in some projected environments.
By letting users hold some physical objects in hand and
manipulate them, more comfortability could be induced in
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the interaction. Sensetable [2] uses a projected interface for
visualization and design. Physical objects with embedded
sensors can be held by users for movements to represent the
corresponding interactions. The Flatland system [3] projects
onto a whiteboard, and interactions are based on the interpreta-
tion of strokes via the stylus onto the whiteboard. Escritoire [4]
uses special pens with embedded sensors to enable interaction
between user and an illuminated table surface. More recently,
Jones [5] demonstrates a projector-camera system that acquires
the object geometry and enables direct interaction through an
IR tracked stylus. These applications are all based on manipu-
lating tangible objects like pens for interactions. The flexibility
can however be further improved if even the intermediate
objects can be waived, and hands and fingers are directly used.
To many, barehand interface enjoys higher flexibility and more
natural interaction than tangible interfaces.

Earlier researches on barehand interfaces demanded assis-
tance from some additional sensors. The interfaces in Dia-
mondTouch [6] and SmartSkin [7], both allow hand input
on a table surface, but the table has to embed a grid of
wired sensors in the first place. SmartSkin recognized multiple
hand positions and shapes and calculated the distance between
the hand and the surface by using capacitive sensing and a
mesh-shaped antenna. Light Touch [8] employed an infrared
sensor to recognize finger’s contact with the projection surface.
Bonfire [9] detected finger tapping using the laptop’s on-board
accelerometer. Skininput [10] resolved the location of finger
taps on the arm and hand by analyzing mechanical vibrations
that propagate through the body. These signals were collected
by a array of sensors worn as an armband.

With the development of computer vision algorithms, some
vision-based projected tabletop interfaces equipped with finger
tracking began to emerge in the last few years. Katz [11]
proposed a framework for a multitouch surface using mul-
tiple cameras. The touch detection problem was addressed
by installing a second camera of which the optical axis is
parallel to the projection surface. The additional instrument as
the second camera will increase system complexity and the
configuration time when the user want to move the system to
other places. Letessier [12] employed a single camera to detect
and track the 2-D position of the tip of bare finger on a planar
display surface, but neglected finger clicking detection. In [13],
[14], the click event was determined through a delay-based
scheme, which has limited usability in applications that require
fast response and multiple same-button clicks. Moreover, such
click events were not intuitive and were rather deliberate since
the user had to hold his finger over the button for a stipulated
period to register a button select. Marshall [15] detected touch
from the change in color of the fingernail when the finger was
pressed against a surface. Song [16] proposed a finger-based
interface in a projector-camera setting that examines if the
finger and its shadow in the image are separated or merged.
Wilson’s PlayAnywhere [17] adopted extra infrared illumina-
tion to enhance the contrast between the finger and non-finger
regions of the image data. This scheme, however, demands a
capability of distinguishing the finger from its shadow robustly
in the image. There is also substantial challenge in extending
the scheme to multitouch interface. Fitriani [18] projected a

Fig. 1. System prototype.

button based interface onto the surface of a soft deformable
object such as a sofa pillow. The appearance changes of the
virtual button being pressed were observed by a camera, which
was considered as a signal of the touch event. The error
detection rate was high due to complex and unpredictable
deformations of the deformable surface.

After the release of PrimeSense’s depth-sensing camera-
based Microsoft Kinect, depth-sensing cameras have been used
in various interactive surface applications. LightSpace [19]
used an array of depth-sensing cameras to track user’s ma-
nipulations on multiple surfaces. In [20], the touch event was
determined by using a per-pixel depth threshold derived from a
histogram of the static scene. Omnitouch [21] detected surface
touch by counting the pixel number in a flood filling operation
in the depth map. Although the PrimeSense’s next-generation
3-D sensor Capri, released in 2013, can fit into smaller devices,
but it is still not a standard device as compared to pico-
projector and CCD camera. All these hinder its applicability
in hand-held consumer electronic products.

III. System Overview

The prototype of proposed system is illustrated in Fig. 1.
The projector-camera system consists of a DLP projector with
a native resolution of 640 × 480 and an interface for firmware
configuration (TI DLP Pico Projector Development Kit 2),
plus a camera of 648 × 488 resolution at 120 frames/s (Point
Grey FL3-FW-03S1C camera with Myutron FV0622 f6mm
lens), both being off-the-shelf equipments. The system was
configured for a working distance of about 500mm, targeting
at a 15-inch projection area. If short-throw projector and short
focus lens are employed, a bigger projection area could be
acquired with shorter distance.

The projector and a camera were mounted rigidly and then
were fixed on a tripod standing on a table surface, as shown
in Fig. 1(a). The projector and camera were connected to a
desktop computer through HDMI and IEEE1394 interfaces
respectively, and the hardware trigger signal of the camera
was connected to the sync. output of the projector for syn-
chronization between them, which are illustrated in Fig. 1(b).
Moreover, the projector-camera system was precalibrated us-
ing the method detailed in [22].
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Fig. 2. System flowchart.

The system flowchart is shown in Fig. 2. Under the frame-
work of imperceptible structured light sensing, the texture
image and subtraction image containing embedded codes are
acquired, and the embedded pattern image is known by pattern
design. Besides, some prior knowledge is embraced in the
projector-camera system, such as the geometric relationship
between the projector, camera and table surface, and the
radiometric properties of the instruments, table surface and
ambient light. The proposed system makes use of the image
data provided by imperceptible sensing and priors embraced
in the projector-camera system to detect the touch action.
Firstly, the hand region is segmented from the texture image.
Then the positions of fingertip in 2-D image are localized
in the binarized hand region. Whether the finger is touching
the surface is determined by comparing the binary codes
derived from the subtraction image and embedded pattern
image through the associated homography mapping.

This paper aims at making the following contributions in
building a touch-sensitive device:

1) Using only off-the-shelf devices
Pocket DCs and cellular phones with built-in projector
and camera have already emerged in the consumable
market. They form the necessary projector-camera foun-
dation in building touch-sensitive interface in handheld
devices.

2) Achieving 3-D sensing without explicit 3-D reconstruc-
tion
Detecting if a finger has indeed touched a tabletop
surface and deciding at which position of the surface
the touch takes place is a 3-D sensing problem. Yet
our system achieve all these without the need of going
through explicit 3-D reconstruction. The system exploits
merely the homography mapping (induced by the table
surface) between the projector’s display panel and the
camera’s image plane. Without going through explicit
depth recovery, the complexity of the sensing task is
much reduced.

3) Precise hand segmentation in projector-camera system
Combining contrast saliency and region discontinuity,
the coarse-to-fine approach can achieve robust, precise
and also rapid hand-segmentation, without the need of
pretraining and precalibration procedures.

Fig. 3. Homographies in projector-camera-surface system.

4) Use of prior knowledge to enhance robustness By ex-
ploiting prior knowledge say about the relative geometry
of the projector, camera, and projection surface, the sys-
tem is endowed with better adaptability to environmental
variations.

The remainder of this paper is structured as follows. In
the next section, prior knowledge embraced in the projector-
camera system is reviewed. In Section V, the principle and
strategy of embedding structured light codes in an invisi-
ble way into regular projection is described. The essential
processes of the proposed method including hand segmenta-
tion, fingertip detection, and touch detection are detailed in
Section VI. In Section VII, the system setup and experimental
results are shown. Conclusion and possible future work are
offered in Section VIII.

IV. Priors in Projector-Camera System

Consider a projector-camera system that has a projector
illuminating certain display pattern to a planar projection
surface (e.g., a tabletop surface) that is imaged by a camera.
Once the two electronic instruments’ intrinsic parameters
and extrinsic relationship relative to the projection surface
are fixed, the image data about the projection surface are
predictable from the projection content. Specifically, which
image position carries which part of the projection content that
is reflected by the projection surface is governed by a particular
homography mapping [23] existing between the projector’s
display panel �P and the camera’s image plane �C, which is
induced by the projection surface �T . In this paper, we make
use of such priors for enhancing the efficiency and precision
of the human-computer interface we aim at building.

As shown in Fig. 3, there are altogether three homographies
in our system: the homography HTC between the camera’s
image plane �C and table surface �T , the homography HPT

between the projector’s display panel �P and �T , and the
homography HCP between �C and �P that is induced by
the table surface. Among them, HPT is used for projector
keystone correction, HCP is for retrieving the structured light
code, and HCT is for deriving HPT which cannot be directly
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calibrated for the reason that projector does not have visual
sensing capability.

Since homography can be expressed as a 3 × 3 matrix of
arbitrary scale, i.e., a matrix with eight degrees of freedoms
(DOFs), it could be determined from as few as four pixel
correspondences across the input and output planes; when
more than four correspondences are available, the least-squares
solution of the homography is to be used.

Firstly, the homography HTC between the camera’s image
plane and the table surface is determined. On this, any rectan-
gular object of known or standard dimension (e.g., credit card,
plastic ruler) placed on the projection surface can be used as
the calibration object. The HTC could be estimated as

XT = HTCXC (1)

where XT is any corner of the flat reference object in homoge-
nous coordinates, and XC is the corresponding point on the
camera’s image plane.

With HCT , the homography HCP between the camera and
projector could be derived with ease. By instructing the
projector to project some distinct markers (e.g., chessboard)
to the table surface, the homography could be calculated in
the same way as the above

XC = HCPXP (2)

where XC is the position of projected marker in the observed
image, and XP is the marker position on the display panel of
the projector, both in homogeneous coordinates.

Finally, the homography HTP between the projector and
table surface is determined as

XT = HTCXC = HTCHCPXP = HTPXP. (3)

V. Embedding Codes into Video Projection

A. Imperceptible Structured Light

The fundamental principle behind imperceptible structured
code embedding [24]–[26] is the temporal integration process
achieved by projecting each image twice at high frequency:
a first image I containing the actual code information [e.g.,
by adding or subtracting a certain amount (�) to or from the
pixels of the original image depending upon the polarity of
the code if binary coding is used], and a second image I ′

that compensates the distortion in the first image with the
goal that the two quick projections as a whole would deliver
an overall visual perception that is without the embedded
code. More precisely, if images I and I ′ are shown to human
subject at a rate double that of the fastest rate (the flicker
fusion threshold) human vision can differentiate temporally,
the collective human visual perception would be merely the
average of I and I ′.

In the case of color projection, it is possible to embed n-nary
structured light code (where n > 2) into the three different
channels (R,G,B). However, in this paper, for simplicity and
for enhancing the robustness to noise, we use n = 2, i.e., we
use only binary code and embed it into all three color channels
simultaneously. Let B, O, I, and I ′ be the binary code to be

inserted, the original image, the first projected image, and the
second complementary image, respectively. Then the projected
image and the complementary image could be expressed as

Ii(x, y) = Oi(x, y) + P(x, y) (4)

I ′
i(x, y) = Oi(x, y) − P(x, y) (5)

P(x, y) =

{
�, when B(x, y) = 1;

0, when B(x, y) = 0
(6)

where i = {R,G,B} indicates whether it is the red, green, or
blue channel, and � is the embedded intensity corresponding
to bit 1 in the structured light code.

Notice that the embedded codes could be internally and
simply extracted from the subtraction image 1 between con-
secutively captured images, as

S(x, y) = max
i

[Ci(x, y) − C′
i(x, y)], i = {R, G, B}. (7)

For the detailed projector-camera synchronization strategy,
please refer to [26].

B. Embedded Pattern Design Strategy and Statistical Analysis

Structured light coding is about equipping each pattern
position with a unique code that can be distinguished in the
image data. The coding can be realized over time or space (the
2-D space of the code pattern itself). In the touch sensitive
interface we aim at building, the fast movement of hand and
finger, the real-time operation requirement, and the constraints
of imperceptible code embedding make the temporal coding
scheme not applicable. We are thus left with the option of
using the spatial coding scheme, which has the advantage that
3-D determination can be achieved with as few as a single
image.

Since the resolution, optical parameters, and the position
and orientation of the camera and projector with respect to the
target object are generally different, it is difficult to align pixels
on the camera’s image plane to those on the projector’s display
panel for exact one-to-one pixel correspondence. To overcome
the problem, binary spatial coding methods generally adopt
certain specific shape primitives (such as stripes, squares,
circles etc.) as appearance profiles, which are readily to be
segmented from the image data in the decoding stage. A
shortcoming of this design scheme is that the density of the
effective feature points is sparse, and in our case is generally
too sparse to ensure that the depth information of the fingertip
can always be derived no matter where it is located. Here we
propose a new binary encoding scheme that allows to achieve
pixel-level precision.

Almost all the spatial coding methods were based on perfect
map or M-array theory for their unique window property.
MacWilliams [27] and Etzion [28] proposed methods to
construct M-array mathematically. By folding pseudorandom
array, the methods are effective and efficient to generate M-
arrays. However, they could only generate the ones of n1 ×n2

size with the k1 × k2 window property, where n = 2k1k2 − 1,

1All the subtraction images in this paper are scaled to [0, 255] for illustration
purposes.
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TABLE I

Summary of Typical Spatial Coding Methods

n1 = 2k1 − 1, n2 = n/n1. In our case, the resolution of
pico projector is 640 × 480. To ensure that every pixel has
a unique binary code, 2k ≥ 640 × 480 , meaning that
k ≥ ln(640×480)/ ln 2 ≥ 18.23. Thus the windows size should
be set as 5 × 5. As a result, the dimension of the perfect map
is n1 = 2k1 − 1 = 31, n2 = n/n1 = 1082401. However, this
result is not applicable to our projector.

Some researchers employed other practical methods to
generate the perfect map. Morano [29] proposed an algorithm
for constructing an M-array, fixing the length of the alphabet,
the window property size, the dimensions of the array and the
Hamming distance between windows. The algorithm used to
generate an array with fixed properties is based on a brute force
approach. In our case, when constructing a binary M-array
with window property of 5 × 5, the following steps are taken:
firstly, a sub-array of 5 × 5 is chosen randomly and is placed
to the top-left corner of the M-array that is to be built. Then
consecutive random columns of 5×1 are added to the right of
this initial sub-array, maintaining the integrity of the window
property of the array. Afterward, rows of 1 × 5 are added
beneath the initial sub-array in a similar way. Then both the
horizontal and vertical processes are repeated by incrementing
the starting coordinates by one, until the whole array is filled
up. When filling the array, the code uniqueness of each newly
added point is checked. If it is not satisfied, the array is
cleared and the algorithm starts again. Since the computational
complexity is extremely high, the author only generated an
array of 45 × 45. Besides the three aforementioned methods,
some other typical methods in binary spatial coding are listed
in Table I. In the literature there is not an effective method to
generate a binary array of 640×480 size that has the required
unique window property. For this reason, in this paper we seek
to generate the pattern array using statistical analysis.

In our system, we use a pico projector that is of 640 × 480
resolution. To make sure that every pixel has a unique binary
code, it is required that 2k ≥ 640 × 480, which means
k ≥ ln(640 × 480) ≥ ln 2 ≥ 18.23. In other words, the
codeword at each pattern position must be at least 18 bits
long. In accordance with the resolution of the pico projector,
a matrix of 640 × 480 is to be filled with pseudo-random
generated sequence consisting of 0 and 1 in standard uniform
distribution. If an m × n window is selected for coding each
pixel, and if the window is picked to be the one with the pixel
as its bottom-right corner, totally (640−m+ 1)× (480−n+ 1)
pixels will be coded by an (m × n)-bit binary string. The
codeword of every effective pixel can be derived and some
statistical analysis can be employed to evaluate the code

Fig. 4. Magnified part of the binary pattern (the dotted line grid is added
for illustration).

uniqueness. For our pico projector, random generation of 6×6
arrays are generally sufficient to equip each pixel with a unique
window label.

In our experimentation, after conducting 100 trials of pattern
generation, the array with the largest average intercodeword
Hamming distance (H̄ = 4.524) was derived. The large
intercodeword Hamming distance corresponds to good noise-
tolerance of the codewords on the imaging side. We chose this
array (part of which is shown in Fig. 4) to embed into arbitrary
video projection.

In the decoding stage, the correspondences between the
camera’s image plane and the projector’s display panel were
established by the homography induced by the projection
surface. This will be discussed in the following section in
depth.

VI. Touch Detection using Homography and

Embedded Code

For the purpose of locating the position of the fingertip
and determining whether a physical touch takes place, some
preliminary processes need be employed, such as hand seg-
mentation and fingertip detection. In this section we discuss
these processes in the circumstance of our particular projector-
camera system.

A. Hand Segmentation

Hand segmentation, as the first step for most barehand-
based applications, plays an important role in the robustness,
accuracy and efficiency of an HCI system. The approaches
for hand segmentation have been studied extensively in the
computer vision community.

Among them, skin color detection [30], [31] is very com-
mon for its simplicity and ease of implementation, and is very
efficient against the case of simple background or hand being
the only skin-colored object. However, in the projector-camera
scenario we have, diverse video contents are projected con-
tinuously. When some skin-colored objects could be projected
onto the background (Region A in Fig. 5), or non-skin-colored
objects are projected onto the hand (Region B in Fig. 5),



1388 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 8, AUGUST 2014

Fig. 5. Sample hand image captured by projector-camera system.

the effectiveness of the skin color based methods could be
compromised severely.

Since the geometrically and radiometrically calibrated
projector-camera system allows to predict where the video
contents are projected and how they should appear in the
image data, background subtraction [32] could be adopted to
segment the hand as the set of pixels that are out of expectation
on the projection surface. However, the approach generally
could not separate the hand region from the hand-cast shadows
(Region C in Fig. 5). It is also generally sensitive to the quality
of the calibration procedures, and demands constant ambient
illuminations and fixed projection surface.

The graph-based [33], [34] approaches are generally able
to generate good segmentations. However, the time-consuming
nature of these approaches and the demand on user interaction
weaken their advantage for the HCI application in which speed
is an important factor for real-time interaction.

Instead of using monocular camera, some researchers use
additional instruments, such as infrared camera [35], stereo
cameras [36], depth sensor [37], and so on, to distinguish
the hand region from the background. However, the additional
hardware inevitably increases the complexity of the projector-
camera system configuration.

In our system, we adopt a coarse-to-fine approach to solve
the aforementioned problems. The main idea is to combine
contrast saliency map with mean-shift based smoothing and
segmentation via a confidence function. Low-level contrast
saliency detection enables the hand region to be highlighted
coarsely, and mean-shift based smoothing method removes the
noises induced by the arbitrary projection contents without
demolishing the discontinuity information. Moreover, even
without demanding pretraining and precalibration procedures,
the approach still allows robust, precise, and rapid hand
segmentation to be achieved.

1) Coarse Segmentation by Contrast Saliency: Despite the
presence of incessant varied video contents projected to the
projection surface and the hand operating above the surface,
the hand is almost always the most noticeable object to human
vision. Motivated by this, we firstly employ a saliency detector

to reach a coarse hand region segmentation. Salient region
detection as a typical low-level vision approach has been
widely studied in computer vision. According to the specific
projector-camera scenario we have, the saliency detector must
satisfy the following requirements:

1) emphasize the largest salient objects;
2) uniformly highlight the whole salient regions;
3) disregard artifacts arising from the projection content

and ambient illumination;
4) accomplish detection in less than 15ms to meet the real-

time requirement.

Upon comparing different saliency detection methods
[38]–[40], we chose the histogram-based contrast [41] method,
which best fulfills the aforementioned criteria, to define the
saliency values for image pixels.

The saliency of a pixel is defined using its color contrast
with respect to all other pixels in the image, i.e., the saliency
value of a pixel Ik in image I is defined as

S(Ik) =
N∑
i=1

D(Ik, Ii) (8)

where D(Ik, Ii) is the color distance metric between pixels Ik

and Ii in the HSV color space. It is clear that pixels with
the same color value have the same saliency value under the
definition, since the measure is oblivious to spatial relations.
Hence, rearranging (8) so that the terms with the same color
value cj are grouped together, we get the saliency value for
each color as

S(Ik) = S(cl) =
n∑

j=1

fjD(cl, cj) (9)

where cl is the color value of pixel Ik, n is the number of
distinct pixel colors, and fj is the probability of having pixel
color cj in image I.

To reduce the high dimensionality of the 2563 true-color
space, the more frequently-emerging 85 colors were selected
by building a compact color histogram using color quantiza-
tion. With that, artifacts would be introduced. A smoothing
procedure is used to refine the saliency value of each color,
which replaces it with the weighted average of the saliency
value of similar colors. Typically, m = n/4 nearest colors are
chosen to refine the saliency value of color c by

S′(c) =
1

(m − 1)T

m∑
i=1

[T − D(c, ci)]S(ci) (10)

where T =
∑m

i=1 D(c, ci) is the sum of the distances between
color c and its m nearest neighbors ci, and the normalization
factor comes from

m∑
i=1

[T − D(c, ci)] = (m − 1)T. (11)

More implementation issues are detailed in [41]. The saliency
map S(x, y) of image I [Fig. 6(a)] is derived as illustrated in
Fig. 6(b).
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Fig. 6. Hand segmentation. (a) Original image. (b) Histogram contrast
salient map. (c) Segments derived through mean-shift. (d) Refined segmenta-
tion result.

2) Mean-Shift Region Smoothing: Even though the hand
region has been highlighted through saliency detection, as
illustrated in Fig. 6(b), it is not uniformly emphasized due to
the influence of the projection content on the hand and the pro-
jection surface. It is generally impossible to have precise hand
segmentation through traditional threshold-based methods. To
tackle the issue, we apply the mean-shift based smoothing and
segmentation approach [42] to the salient regions, which not
only eliminates the noises but also preserves the discontinuity
by adaptively reducing the amount of smoothing near the
abrupt changes in the local structure, i.e., over the boundaries.

One important advantage of mean shift-based segmentation
is its capability to resolve the over-segmentation issue. The
joint-domain mean shift-based segmentation succeeds in over-
coming the inherent limitations of the methods based only
on gray-level or color clustering which typically over-segment
small gradient regions. Notice that small intensity-gradient re-
gions are not uncommon in the projector-illuminated area due
to the projector’s nonlinearity and the variations of ambient
illuminations.

Another important advantage of mean shift-based segmen-
tation [42] is its modularity which makes the control of
segmentation output simple. The control is just through three
parameters: (hs, hr, M). The range parameter hr and the small-
est significant feature size M control the number of regions
in the segmented piecewise constant model; generally larger
values have to be used for hr and M to discard the effect of
small local variation. The spatial parameter hs determines the
size of the spatial window. In our case, (hs, hr, M) is set to
(7, 10, 20).

It is worth mentioning that the inherent iterative nature of
the mean-shift based method often invokes the efficiency prob-
lem. However, the coarse salient region detection conducted
earlier could reduce the mean-shift search space and accelerate
the convergence speed dramatically.

After mean-shift smoothing and segmentation, the image is
divided into L candidate partitions Pk, i = 1, . . . , L, as shown
in Fig. 6(c). The contour of the hand is generally preserved
well.

3) Precise Segmentation by Fusing: To acquire precise
hand region segmentation, we propose a confidence function
that puts contrast saliency and region discontinuity together
to evaluate the probability of a candidate partition for being
a part of the hand region. The value of confidence function
for each candidate partition is determined by several terms as
listed below:

1) the average salient value of the pixels in the partition;
2) the number of the neighbor partitions and the average

salient value of neighbor partitions;
3) the area of the partition;
4) whether the partition is on the image boundary.
Hence, the value of the confidence function CF (k) for

partition Pk is formulated as

CF (k) =
1

e(L−1)
[αS̄(k) + βS̄N (k) + γA(k)] (12)

where S̄(k) is the average saliency value of the pixels in
Pk, S̄N (k) is the average saliency value of its N neighbor
partitions, and A(k) is the partition’s area. The three terms
above are all scaled to [0, 1]. L is the number of image
boundary segments to which the partition attached; L ≥ 2
indicates that the partition belongs to background that should
have low confidence value. The weights are α, β, γ . If one
partition is an isolated area in the hand region or background
region, the confidence value of that partition would depend
mostly on its surrounding neighborhood. Hence, when the
number of neighbor partitions N is 1, β = 1/2, α = γ = 1/4;
otherwise, α = 1/2, β = γ = 1/4.

If CF (k) is greater than a predefined threshold �, the par-
tition is considered as a part of the hand region. Since not all
skin pixels are categorized always correctly, a morphological
closing operation is employed to remove small noisy holes in
the skin pixel areas. This way, the refined binary segmentation
is reached, as shown in Fig. 6(d).

B. Fingertip Detection

Fingertip detection is conducted on the basis of the seg-
mented binary hand image. As illustrated in Fig. 7(b), the
hand contour is retrieved from the binary image using the
algorithm detailed in [43], The extracted contour serves to
offer fingertip candidates through a simple arc line analysis.
Let T(x), x = 1, . . . , N be the various points of the hand
silhouette in clockwise order, where N is the total number of
contour points. Whether a particular contour point T (k) is a
fingertip candidate is examined by the curvature of the contour
there. We express the curvature as the angle θ

θ = arccos
v1 · v2

‖v1‖‖v2‖ (13)

v1 = T(k) − T(k − t) (14)

v2 = T(k) − T(k + t) (15)

where T(k − t) and T(k + t) are contour points in the vicinity
of T(k), each on a different side of T(k) at an interval of t

points from it.
If θ < π

2 and |v1, v2| > 0, T(k) is regarded as a fingertip
candidate. The second conditional term as a determinant is
employed to distinguish the fingertip peaks from the valleys
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Fig. 7. Fingertip detection. (a) Binary hand image. (b) Hand contour.
(c) Fingertip candidates. (d) Detected fingertips.

Fig. 8. Touch detection via homography.

between fingers. Some fingertip candidates, indicated by blue
points in Fig. 7(c), are thus extracted. Finally, the candidates
that are consecutive or nearly consecutive in the hand silhou-
ette are clustered into the same group, and in each group only
the candidate in the median position is regarded as a fingertip
[yellow points in Fig. 7(d)].

C. Touch Detection Through Homography

With the fingertips detected, the next task is to examine
if any of the fingertips touches the display surface. In the
coding design, we ensure that every pixel in the projected
pattern is coded by a 36-bit binary codeword. However, as
discussed above, it is generally infeasible to align pixels on the
camera’s image plane to those on the projector’s display panel
for one-to-one pixel correspondence between the two. Instead,
we make use of the homography between the image plane and
display panel that is induced by the table surface. Below we
use the single-touch case as an example to illustrate how a
mere touch is detected. Multitouch detection is an extension
of single-touch detection.

As illustrated in Fig. 8, suppose we have a finger touching
the projection surface. The fingertip FC lies on the plane of
the projection surface, and thus would satisfy the associated
homography. More precisely, a position FP on the display
panel of the projector �P can be derived in homogenous

Fig. 9. Homography transfer across parallel planes.

coordinates as F̃P = HPCF̃C. The codeword at FP is then
determined by the code values of the pixels FPi

in a 6 × 6
window that has FP as its bottom-right corner. In other words,
the binary codeword BCP at FP is regarded as

BCP =
35∑
i=0

2i · IP (FPi
) (16)

where FPi
∈ {(XPi

, YPi
)|XP − 5 ≤ XPi

≤ XP, YP − 5 ≤ YPi
≤

YP }.
On the other hand, the binary code embedded in the image

data at point FC can be observed as

BCS =
35∑
i=0

2i · IS(FSi
) (17)

F̃Si
= H−1

PCF̃Pi
(18)

where F̃Si
and F̃Pi

are the homogenous representations.
If the Hamming distance between BCP and BCS is less than

a preset threshold λH , FP and FS are considered as sharing the
same code, meaning that the touch has taken place. Otherwise,
the finger is regarded as not having physical contact with the
table surface. The threshold λH should be adjusted according
to the ambient illuminations for suitable noise-tolerance.

The above allows touch to be determined without going
through explicit 3-D reconstruction, and can operate in real-
time.

D. From Resistive Touching to Capacitive Touching

In the last subsection, we have emulated a resistive touch
operation, which requires touching with a certain pressure on
the projection surface. Below we show how to enhance the
touch sensitivity and adjust the interface from a resistive-like
touch to a capacitive-like touch.

In fact we can generate from the table surface-induced
homography to another homography that is induced by a plane
parallel to but slightly elevated from the table surface, as
indicated by any of the shown dashed lines in Fig. 9. The
dash lines correspond to different levels of touch sensitivity
demanded. If the homography so generated is satisfied by any
detected finger tip in the image data, a touch action is regarded
as confirmed.

As shown in Fig. 9, given a plane �, we can define a
coordinate frame W : X − Y − Z local to it, with x, y axes
within the plane �, and z-axis perpendicular to �. Suppose
the plane � is the table surface, and we know the homography
H̄� from � to the camera’s image plane, that is induced by
� itself. Then let the precalibrated projection matrix of the
camera be

P ∼= [p1, p2, p3, p4] ∼= K[r1�, r2�, r3�, t�] (19)
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where K is the 3 × 3 matrix containing all the intrinsic
parameters of the camera. Notice that the homography H̄�

that owns the property

m̃ ∼= H̄�[X, Y, 1]T (20)

is related to the camera projection matrix by H̄�
∼=

[p1, p2, p4] ∼= K[r1�, r2�, t�].
Suppose we have a plane �di

parallel to but elevated
from � by a perpendicular distance di. For the 3-D position
(X, Y, di) on �di

, which is elevated from point (X, Y, 0) on �

perpendicularly by distance di, the image projection m̃′ can be
expressed as

m̃′ ∼= K[R�, t�][X, Y, di, 1]T

∼= K(Xr1� + Yr2� + dir3� + t�)
∼= K([r1�, r2�, t�] + di[0, 0, r3�])[X, Y, 1]T

∼= (H̄� + di[0, 0, Kr3�])[X, Y, 1]T . (21)

By substituting (20) into (21), we have

m̃′ ∼= (I + di[0, 0, p3]H̄−1
� )m̃ ∼= HCdi

m̃. (22)

Hence, through the original homography and the third column
of the camera projection matrix, we can derive the homogra-
phy HCdi

between the camera’s image plane and the elevated
plane. In a similar way, the homography HPdi

between the
projector’s display panel and the elevated plane can also be ex-
pressed. Finally, the new homography between the projector’s
display panel and the camera’s image plane that is induced
by the elevated plane, is obtained as HCPdi

= HCdi
HCPH−1

Pdi
,

which can be adopted for more sensitive touch sensing on the
table surface.

VII. Experiments

To assess the feasibility of the described system for bare-
hand human-computer interface, we conducted experiments to
evaluate display quality, hand segmentation accuracy, touch
detection accuracy, trajectory tracking accuracy, multitouch
capability, and system efficiency respectively.

A. System Initialization

For any camera-projector-table system, projection keystone
correction is a necessary process, which in our case is accom-
plished by the use of the homography between the projector’s
display panel and the table surface. On the other hand, the
finger touch action is determined through the homography
between the camera’s image plane and the projector’s dipslay
panel, that is induced by the planar table surface. Therefore,
before the system’s operation, the initialization step is to
estimate the camera-table and camera-projector homoraphies.

1) Camera-Projector Homography Estimation: To esti-
mate the camera-projector homography, one projection-capture
cycle is needed. As shown in Fig. 10(a), a chessboard pattern
was projected onto the table surface, the chessboard corners
CPi(i = 0, . . . , N) indicated by the blue circle were con-
sidered as the feature points, and the coordinates of these
points were known from the chessboard generation process.
Using camera, an image of the table surface illuminated by

Fig. 10. Images for camera-projector homography estimation. (a) Projected
chessboard. (b) Captured image.

Fig. 11. Images for camera-table homography estimation. (a) Credit card.
(b) Captured image.

the chessboard was acquired. Then through the automatic
corner detection in the image data, the corresponding points
CCi(i = 0, . . . , N) were found, as indicated by the white
dots in Fig. 10(b). Finally, by the use of CPi ∼ CCi

correspondences, the camera-projector homography HCP can
be calculated by the least-square method.

2) Camera-Table Homography Estimation: Because of the
lack of sensing capability of the projector, it is impossible
to estimate the projector-table homography directly. However,
With the camera-projector homography already obtained, plus
knowledge of the camera-table homography, the projector-
table homography can be determined through homography
composition. To deetermine the camera-table homography, a
planar object with standard known dimension is required. As
illustrated in Fig. 11(a), a credit card was employed as the cal-
ibration object, the black magnetic stripe on it was a rectangle
with standard dimension of 85.5mm × 12.5mm(W × H). The
top-left corner was chosen as the origin of the coordinate sys-
tem of the card, and thus the coordinates of the four corners O,
Px, Py and Pxy were (0, 0), (85.5, 0), (0, 12.5) and (85.5, 12.5)
respectively. The credit card was put onto the table surface,
and then an image was captured as shown in Fig. 11(b). After
binary segmentation and corner detection, four corresponding
points Ci, i = 1, . . . , 4 were detected in the image, as indicated
by the yellow crosses in Fig. 11(b). Then through the four
correspondences (C1 ∼ O, C2 ∼ Px, C3 ∼ Py, C4 ∼ Pxy), the
camera-table homograpy could be determined.

Thus the initialization step requires only one image to be
projected and two images to be captured. Including the com-
putation time, the initialization can be accomplished within
five seconds.

B. Display Quality Evaluation

Embedded code imperceptibility and user satisfaction is
of the first priority in the system design. We conducted
user studies based on a questionnaire. Twenty persons were



1392 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 8, AUGUST 2014

Fig. 12. User study results on code imperceptibility.

Fig. 13. Visual comparison. (a) Original image. (b) Ground-truth. (c) Our
method. (d) SCM [30]. (e) BkSub [32]. (f) GB [33]. The yellow (top-left) and
green (top-right) numbers in each result image are the corresponding precision
p and recall r values, respectively.

invited to participate in this experiment. 500 images were
collected from Google Image randomly, to which binary
pattern was embedded with different intensities. The viewers
were seated in front of a desk surface to which the video
contents were projected, and asked to comment on the quality
of the projections. The questions asked were simplified from
the questionnaire used in [44], focusing on the feeling of
flickering, the recognition of image deterioration, and the
overall satisfaction on the projection quality. The score for
each question ranged from 0 to 10.

The average scores of the subjective evaluation are illus-
trated in Fig. 12. In practice, because of the limited projection
intensity of the consumable-grade projector we used in our
experimentation, we chose � = 10 in our configuration
to strike a compromise between user satisfaction and code
imperceptibility.

C. Hand Segmentation Accuracy Evaluation

As the first step of touch detection, how accurately the hand
region is segmented has a direct impact to the performance

Fig. 14. Precision-recall bars for hand segmentation using different methods.
Our method shows high precision, recall and Fβ values.

TABLE II

Quantitative Experimental Results

of touch detection. It is thus necessary to evaluate first the
accuracy of hand segmentation.

We collected a great diversity of images (e.g., flowers,
buildings, celebrities, animals etc.) from Google Image and
projected them to a desk surface. An experimental dataset of
500 images was captured under different projection contents
and different hand shapes. The ground-truth was manually
annotated with the assistance of GrabCut [34]. Several test
images with their ground-truth are shown in Fig. 13(a) and (b).

To illustrate the merits of the proposed method, we con-
ducted comparison experiments with some related methods.
The choice of these methods is motivated by the following
reasons: citation count in the literature (the classical approach
of statistical color model-based (SCM) method is widely
cited [30]), precision [the background subtraction method
(BkSub) has higher precision, since it is on the basis of using
precalibrated geometric and radiometric information to predict
the background image [32]], and recency [the sophisticated
graph based method (GB) [33] is one of the latest methods].

As in [41], we adopted the F-beta score to evaluate the
accuracy of segmentation, which considers both the precision
p and the recall r to compute the score: p = NC/NR,
r = NC/NG, where NC, NR, NG are the numbers of correctly
segmented pixels, all segmented pixels and ground-truth pix-
els respectively. The F-beta score is the harmonic mean of
precision and recall, formulated as

Fβ = (1 + β2) · p · r

(β2 · p) + r
(23)

where β is set to 0.3 to weigh precision more than recall [41],
[39]. The visual and quantitative comparisons are shown in
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TABLE III

Comparison with Previous System in Different Scenarios

Figs. 13 and 14 respectively. Among all the methods, our
method shows the highest precision, recall and Fβ values. It
is expected that the skin color-based method (SCM) gets low
precision when some projected objects have color similar to
that of the skin; examples of such objects are human face
and yellow flower as shown in Fig. 13(d2) and (d4). The
background subtraction method (BkSub) shows a high recall
but poor precision, verifying that the shadow cast by video
projection has great influence to the method, as shown in
Fig. 13(e4) and (e6). The graph-based method (GB) cannot
preserve smooth boundaries and often confuse the projected
objects with the hand region, which are the main reasons for
low precision score, as illustrated in Fig. 13(f4)–(f7).

D. Touch Accuracy Evaluation

Similar to [21], we specifically designed an image, in which
35 circles were distributed uniformly. As shown in Fig. 15(a),
the center of each circle, indicated by the cross symbol,
was known. The testing pattern was projected to three table
surfaces with different textures as shown in Fig. 15(b)–(d). In
each round, the users clicked the virtual projected circles one
by one as accurately as they could. If a touch contact was
detected, a yellow circle was placed around the clicked circle
[Fig. 15(b) and (d)]. Five persons were invited to participate
in the experiment, each of them conducted six rounds (on the
three surfaces and under two ambient illuminations). Totally,
1050 touch trials were produced.

The precision of touch position localization is evaluated by
the average distance between ground-truth and the detected
position, which is formulated as

ε =
1

Nt

Nt∑
i=1

√
(Xdi

− Xgi
)2 + (Ydi

− Ygi
)2 (24)

where Nt is the total number of correctly detected touch
contacts, and (Xdi

, Ydi
) and (Xgi

Ygi
) are the detected position

and ground-truth respectively.
The accuracy of touch detection is estimated by false reject

rate (FRR): the probability that the system fails to detect
an actual touch action, and false accept rate (FAR): the
probability that the system incorrectly confirms a non-contact
action as a touch contact. FRR and FAR are formulated as
FRR = Nmd/N, FAR = Nfd/N, where N is the total trial
number, Nmd and Nfd are the number of missed detections
and false detections respectively.

Fig. 15. (a) Image projected for ground-truth collection. (b) Gray surface.
(c) Yellow surface. (d) Surface with artifacts.

The detailed quantitative testing results, listed in Table II,
illustrate the performance and robustness of the described
system against different projection surfaces and different sur-
rounding illuminations. Here, we compared our method with
some recent depth-camera sensing based methods. In [20], the
informal observed spatial error of finger detection on planar
surface was between 3–6 pixels, but the finger click detection
error was not mentioned. As for OmniTouch [21], the FRR
and FAR of finger click detection on four different surfaces
were reported as 0.8% and 3.3%. Even though the evaluation
data-sets, the sensing systems and working environments were
not exactly identical, the comparison results show that the
described system has at least comparable performance even
with the use of simpler devices. Some frames from one trial
are shown in Fig. 16. There the camera view, third person
view, and fingertip trajectory are also demonstrated in each
sub-figure.

Furthermore, we compared touch detection accuracy be-
tween proposed system and previous PROCAMS12 system
[1] in different scenarios, the detailed results are shown
in Table III. The performance in scenario with gray pro-
jection surface and dark ambient lighting is set as bench-
mark. Compared with the background subtraction method in
hand segmentation module of PROCAMS12 system, the new
hand segmentation method has higher accuracy, as evaluated
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Fig. 16. Some frames from one trial (regular ambient illumination and artifacts surface) on touch accuracy evaluation. (a) Frame 1019. (b) Frame 1032.
(c) Frame 1192. (d) Frame 1198.

in Section VII-C, therefore the proposed system has better
touch detection performance. What’s more, since background
subtraction method greatly depends on accurate background
prediction, if projection surface or surrounding illumination
is changed, the PROCAMS12 system has to be recalibrated to
update the radiometric parameters. Otherwise, the performance
will have a remarkable degradation. As demonstrated in the
scenarios of changing to artifact surface or normal illumination
without radiometric calibration, more than 75% touch actions
cannot be detected correctly. This disadvantage makes pre-
vious system unadaptable for mobile applications in which
projection surface and surrounding lighting always change.

E. Trajectory Tracking Evaluation

Besides clicking, finger dragging is also an important action
in typical touch screen operation. We conducted an evalua-
tion of trajectory tracking when finger was dragged on the
projection surface. As shown in Fig. 17(a), three different
geometrical shapes (square, right triangle and circle) were
projected onto the table surface. Five users were asked to
drag their index finger along three boundaries one by one.
The average trajectories indicated by blue curves [as shown

Fig. 17. (a) Image projected for ground-truth collection. (b) Fingertip drag-
ging trajectories.

in Fig. 17(b)] almost coincided with the ground-truth in gray.
This experiment shows that our method can track the trajectory
of dragged finger precisely.

F. Multiple-Touch Evaluation

Multitouch refers to a touch sensing surface’s ability to
recognize the presence of two or more points of contact
with the surface. This plural-point awareness is often used
to implement advanced functionality such as pinch to zoom
or activating predefined programs. In the aforementioned
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Fig. 18. Some frames from one trial on multitouch capability evaluation. (a) Frame 10641. (b) Frame 10809. (c) Frame 10813. (d) Frame 11601.

TABLE IV

Average Processing Time

experiments, our method has been shown as an accurate and
effective method for tracking the state of a single finger. Our
system is amenable in that single-touch sensing can be easily
extended to multitouch sensing. Some key frames from one
trial are demonstrated in Fig. 18, revealing the feasibility on
the multitouch case.

G. Efficiency Evaluation

For human-computer interface, real-time performance is of
great importance. We implemented the proposed system in
C++ using the Intel OpenCV Library to speed up the process-
ing time. Through multithread programming, the projection-
capture process and calculation process were executed in two
different threads respectively, each of which was able to run in
real time in a desktop computer with Intel Core2 Duo 2.53GHz
CPU.

Table IV shows the average processing times for off-line
calibration, segmentation in the image domain, fingertip local-
ization, and touch detection in proposed system and previous
system [1] respectively. The time consumed by off-line calibra-
tion does not include projection-capture cycles for calibration
data collection. Because proposed system adopts novel hand
segmentation approach which does not require photometric
calibration, the computation time is much shorter than that of
previous system. Moreover, the proposed system just needs
one projection and two capture operations, the actual calibra-
tion time is even shorter than that of previous system, which
needs six projection and seven capture operations. Among all
on-line subroutines, hand segmentation spends more time due
to the iterative characteristic of mean-shift algorithm. The total
time consumption is less than 30ms, indicating the system
meets the requirement of real-time application. Although the
total time consumption of online calculation is greater than that
of previous system, the less time consuming in calibration will
provide more flexibility in mobile applications.

VIII. Conclusion and Future Work

This article explores the possibility of replacing the display
panel and the mouse-and-keyboard by a mere projector and

camera. Specifically, it is to enable a light-colored table
surface, to which the projection is illuminated, to serve as
a touch-sensitive display panel for finger-based user input.

The described work lays down the setup and design of the
projector-camera system for touch-sensitive interface. Single-
touch, touch dragging tracking and multitouch facilities are
also constructed and thoroughly experimented with. All these
form the basis of a more complete touch interface system.

Future work includes more thorough experimentation with
multihand interface using the system. Based upon the touch
detection facility, advanced touch gestures (e.g., double click,
scroll, zoom-in, zoom-out) and even typing recognition on the
described platform will be studied. It is necessary to transplant
the algorithm to mobile devices which have limited computing
resource, although our method can run at about 50 frames/s
on a desktop computer, it is not fast enough for embedded
system. The hand segmentation subroutine spends most of
the time, more effective hand segmentation approach will be
investigated. Moreover, the diverse anatomy of a human finger
allows different parts of it to be recognized—including the tip,
pad, nail and knuckle—without having to instrument the user.
This opens several new and powerful interaction opportunities
for touch input. Unlike TapSense [45] that demands the use
of additional acoustic sensor to classify unique signatures that
different objects create when striking a touch surface, in our
system some visual recognition methods could be explored to
see if different parts of a finger touching a table surface can
be identified. This is another direction of our future work.
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“Frequency-tuned salient region detection,” in Proc. IEEE CVPR, 2009,
pp. 1597–1604.

[40] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency
detection,” in Proc. IEEE CVPR, 2010, pp. 2376–2383.

[41] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-M. Hu,
“Global contrast based salient region detection,” in Proc. IEEE CVPR,
2011, pp. 409–416.

[42] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[43] S. Suzuki and K. Abe, “Topological structural analysis of digitized
binary images by border following,” Comput. Vision, Graph. Image
Process., vol. 30, no. 1, pp. 32–46, 1985.

[44] H. Park, B.-K. Seo, and J.-I. Park, “Subjective evaluation on visual
perceptibility of embedding complementary patterns for nonintrusive
projection-based augmented reality,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 5, pp. 687–696, May 2010.

[45] C. Harrison, J. Schwarz, and S. E. Hudson, “Tapsense: Enhancing finger
interaction on touch surfaces,” in Proc. ACM UIST, 2011, pp. 627–636.

Jingwen Dai (S’09–M’12) received the B.E. degree
in automation from Southeast University, Nanjing,
China, in 2005, the M.E. degree in automation from
Shanghai Jiao Tong University, Shanghai, China,
in 2009, and the Ph.D. degree in mechanical and
automation engineering from the Chinese University
of Hong Kong, Hong Kong, in 2012.

He is currently a Post-Doctoral Research Asso-
ciate with the Department of Computer Science,
University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA. His current research interests include

computer vision and human-computer interaction.

Chi-Kit Ronald Chung (SM’99) received the
B.S.E.E. degree from the University of Hong Kong,
Hong Kong, and the Ph.D. degree in computer engi-
neering from the University of Southern California,
Los Angeles, LA, USA.

He is currently with the Vocational Training Coun-
cil (VTC) of Hong Kong, Hong Kong, as the Deputy
Executive Director. He is also the Adjunct Professor
of the Chinese University of Hong Kong (CUHK),
Hong Kong. Prior to joining VTC, he was a Pro-
fessor and the Department Chairman of Mechanical

and Automation Engineering of CUHK. His current research interests include
computer vision and robotics.

Dr. Chung has served the academic communities in various capacities
including the Chairman of the IEEE Hong Kong Section Joint Chapter on
Robotics and Automation Society and Control Systems Society from 2001 to
2003. He is a fellow of HKIE, a fellow of BCS, CEng of the Engineering
Council of U.K., and a member of MENSA.


