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Embedding Invisible Codes into Normal Video
Projection: Principle, Evaluation, and Applications
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Abstract—We describe a system of embedding codes into
projection display for structured light-based sensing, with the
purpose of letting the projector serve as both a display device and
a 3-D sensor. The challenge is to make the codes imperceptible
to human eyes so as not to disrupt the content of the original
projection. There is the temporal resolution limit of human
vision that one can exploit, by having a higher than necessary
frame rate in the projection and stealing some frames for code
projection. Yet, there is still the conflict between imperceptibility
of the embedded codes and the robustness of code retrieval that
has to be addressed. We introduce noise-tolerant schemes to
both coding and decoding stages. At the coding end, specifically
designed primitive shapes and large Hamming distance are
employed to enhance tolerance toward noise. At the decoding
end, pretrained primitive shape detectors are used to detect
and identify the embedded codes, a task that is difficult to
achieve by segmentation that is used in general structured light
methods, because the weakly embedded information is generally
interfered by substantial noise. Extensive experiments show that
the proposed system is effective, even with the prerequisite of
incurring minimum disturbance to the original projection.

Index Terms—Embedded pattern design, imperceptible struc-
tured light sensing, primitive shape detection and classification,
sensitivity analysis.

I. Introduction

THE improving performance, declining price, and dimin-
ishing size of digital video projectors make it possible to

use them prevalently. Being able to generate an arbitrarily large
display is a feature of projectors that makes them exceedingly
attractive, especially in applications that demand portability.
On the other hand, the adoption of structured light illumination
has been proven to be an effective and accurate means for
3-D information perception [1]. Recently, the availability of
pico projectors with average dimensions of 4 × 2 × 1 inches
has widely extended the application domain of structured light
systems. There are already pocket DCs, DVs and cellular
phones (as shown in Fig. 1) in the consumable market that
have both projector and camera built-in, making it possible
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Fig. 1. Mobile devices with built-in pico projector.

to implement structured light system in hand-held consumer
electronic products.

In other words, a projector accompanied by a camera has
the potential of achieving both display and sensing, i.e., for
both input and output in human–computer interface, making it
a possible device to replace traditional LCD panel, keyboard,
and touch-sensitive screen altogether in computing, with only
diminished size and weight. A projector has the potential of
making a breakthrough of dramatically downsizing portable
computing without sacrificing display size.

For these reasons, a projector–camera (ProCam) system has
been actively researched in the last few years. Many research
groups apply projectors in unconventional ways to develop
new and innovative information displays that go beyond simple
screen presentations [2].

Some researchers designed structured light systems in the
non-visible spectrum [3]. In that way the media for regu-
lar projection and structured light-based sensing (SLS) can
be made separately. However, additional hardware could be
reduced and device size diminished if structured light and
regular projection can be achieved through the same projector.
This leads to the concept of Imperceptible Structured Light
(ISL). ISL modulates the projected display either spatially or
temporally to embed code patterns for SLS. In principle, due
to limitations of human visual perception, the embedded code
patterns can be made undetectable to the user, but cameras
synchronized to the modulation are able to reconstruct the
embedded codes for SLS.

The embedding of code patterns into regular projection
can be used for a variety of applications including projector
calibration, camera tracking, and 3-D scanning.

1051-8215 c© 2013 IEEE
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There is however a challenge in embedding codes into regu-
lar projection. While the codes should be made as undetectable
as possible to the user, they have to be decodable to the
camera for the purpose of SLS. On top of the dilemma, there
is the inevitable fact that the displayed signals are generally
corrupted by substantial noise that arises from the nonlinearity
of the projector, the sensing defects of the camera, and the
variation of the ambient illumination. The objective of this
paper is to deal with the dilemma and the accompanying
issues.

This article describes a novel method of embedding imper-
ceptible structured codes into arbitrarily intended projection.
Through precise projector–camera synchronization, structured
codes consisting of three primitive shapes are embedded into
the projection, in a way that is imperceptible to viewers but
extractable from the "difference image" between successive
images captured by a camera. To make the decoding process
more robust against noise, we do not extract the codes by
region segmentation in the image domain. Instead we employ
specially trained classifiers to detect and identify the codes.
To enhance the error tolerance further, specially designed
primitive shapes and large Hamming distance are adopted in
the spatial coding. Even with some bits of the codewords
missed or wrongly coded, the correct correspondence could
still be derived correctly.

A preliminary version of this paper was published in [4], in
which we introduced the robust coding and decoding approach
for embedding imperceptible structured code into arbitrary
video projection. In [5], we integrated the method into robotic
system and demonstrated the effectiveness in robotic applica-
tions. In training-based methods, generalization of the training
results is often an issue, and it is especially so when the work
scenario could have substantial variation between the training
stage and the operation stage. In this paper, we provide a
thorough experimental sensitivity evaluation together with the
associated statistical analysis, they show that the scheme of
embedding imperceptible codes into normal video projection
can be maintained effective despite possible variations on sens-
ing distance, projection-surface orientation, projection-surface
shape, projection-surface texture and hardware configuration.

The remainder of this paper is structured as follows. In
Section II, related works on imperceptible structured light
sensing are briefly reviewed. The principle of embedding
imperceptible codes along with robust coding and a noise-
tolerant decoding mechanism are described in Section III. In
Section IV, system setup and experimental results are shown.
Sensitivity evaluation and potential applications are described
in Sections V and VI. Conclusion and possible future work
are offered in Section VII.

II. Related Work

A proof of concept for embedding invisible structured light
patterns into digital light processing (DLP) projections first
appeared in the "Office of the Future" project [6]. In this
paper, binary codes are embedded by projecting temporally
alternating code images and their complements. Provided
that the frequency of projection reaches the flicker fusion

threshold (≥ 75Hz), the pattern and the inverse pattern are
visually integrated over time in human perception, and the
illumination has the appearance of a flat field (white light)
to humans. However, the demonstration required significant
modification effort on the projection hardware and firmware,
including removal of the color wheel and reprogramming of
the controller. The resulting images were also in greyscale
only. The implementation of such a setting was impossible
without mastering and full access to the projection hardware.

Cotting et al. [7] introduced a coding scheme that synchro-
nizes a camera to a specific time slot of a DLP micro-mirror
flipping sequence in which imperceptible binary patterns are
embedded. However, not all mirror states are available for
all possible intensities, and the additional hardware, DVI
repeater with tapped vertical sync signal, is not an off-the-
shelf instrument.

However, with the development of digital projection tech-
nology, some so-called 3-D compatible DLP projectors with
refresh rate of 120Hz or higher emerged recently. This makes
it possible to implement imperceptible structured light without
any hardware modification or extra assisting hardware. Many
researcher began to study how to determine the embedded
intensity properly to guarantee code imperceptibility.

In [8], subjective evaluation results and statistical analysis
on the visual perceptibility of embedded codes in different
ways were reported. The factors affecting code visibility are
also outlined. Park et al. [9] presented a technology for
adaptively adjusting the intensity of the embedded code with
the goal of minimizing its visibility. It was regionally adapted
depending on the spatial variation of neighboring pixels and
their color distribution in the YIQ color space. The final code
intensity was then weighted by the estimated local spatial
variation. Since two manually defined parameters adjusted the
overall strength of the integrated code, the system was not able
to automatically calculate an optimized intensity. Grundhofer
et al. [10] proposed a method considering the capabilities and
limitations of human visual perception for embedding codes.
It estimated the just noticeable differences (JND) based on
the human contrast sensitivity function and adapted the code
intensity on the fly through regional properties of the projected
image and code, such as luminance and spatial frequencies.
The shortcoming of this method was that some parameters
need be premeasured using some optical devices (e.g. pho-
tometer), which were not accessible to nonprofessional users.

To the best of our knowledge, until now, few works focus
on the decoding method in imperceptible code embedding
configuration, especially when huge external noise could exist.

III. Method

A. Principle of Embedding Imperceptible Codes

The fundamental principle behind imperceptible structured
code embedding is the temporal integration achieved by pro-
jecting each image twice at high frequency: a first image con-
taining actual code information (e.g., by adding or subtracting
a certain amount (�) to or from the pixels of the original
image, depending upon the code) and a second image that
compensates for the distortion in the first image. The vital
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Fig. 2. Projector–camera synchronization and basic principle of embedding
and extracting imperceptible codes.

aspects of ISL sensing are code embedding and projector-
camera synchronization.

Since general projection is in color, it is possible to embed
color code through three different channels. However, to
enhance code robustness toward noise, we use binary code and
embed it into all three color channels simultaneously. Let B,
O, I, and I ′ be the binary code image, the original image, the
projected image, and the complementary image, respectively.
Then the projected image and complementary image could be
formulated as

Ii(x, y) = Oi(x, y) + P(x, y) (1)

I ′
i(x, y) = Oi(x, y) − P(x, y) (2)

P(x, y) =

{
�, when B(x, y) = 1

0, when B(x, y) = 0
(3)

where i = {R,G,B} indicates red, green and blue channels, �

is the embedded intensity.
To avoid intensity saturation at lower and higher intensity

levels when adding or subtracting �, the original image needs
to have the intensity range in each color channel compressed to
between � to 255−�. Since the embedded intensity required
in the coding is small enough, the visual degradation due to
contrast reduction is negligible.

The degree of imperceptibility thus depends upon the em-
bedded intensity. A larger intensity enables the code to be
more tolerant toward noise and more readable in the image of
the projection, whilst a smaller intensity makes the embedded
codes more invisible. In our design, code imperceptibility has
higher priority, and thus embedded intensity is set to a very
small value.

In order to achieve imperceptible structured light projection,
the frequency of projection must exceed the flicker fusion
threshold, which is 75Hz for most of the people. Here we
take one projection-capture cycle as an example to elaborate

the strategy of projector–camera synchronization, which is
illustrated in Fig. 2. Firstly, we ensure that the projector
projects an image every 10ms, i.e., at 100Hz. As shown in
Fig. 2, along the time axis, the projected image I and the
complementary image I ′ are projected at the time instants 0ms,
10ms, respectively. With a refresh rate of the camera at about
100 frames per second, the camera captures the image C and
C′ at 5ms and 15ms, shortly after the projector projects the
projected image and complementary image to the scene. At
20ms a new projection-capture cycle will resume. With the
aforementioned projection-capture strategy, the system could
capture 50 image pairs per second.

The embedded codes could be internally and simply ex-
tracted from the "subtraction image"1 between consecutively
captured images as

S(x, y) = max
i

[Ci(x, y) − C′
i(x, y)], i = {R, G, B}. (4)

Ideally, the subtraction image should be a binary image that
has maximum value of 2� and minimum value of 0. However,
the subtraction image in reality is generally disturbed by
large external noises. Since the embedded intensity is always
small, the subtraction image has low signal-to-noise ratio. It
is generally nontrivial to retrieve the embedded codes. In the
rest of this section, we describe how robust coding and noise-
tolerant decoding approaches can help tackle the issue.

B. Design of Embedded Pattern

The strategy of encoding in general structured light methods
could be classified into two categories [1]: time multiplexing
and spatial multiplexing. The former can achieve denser data
samples with higher accuracy, but at the expense of requiring
multiple illuminations and image captures over time, which
is not suitable for imperceptible code embedding [8] and dy-
namic scenes. In contrast, the latter labels each pattern position
by the appearance profile (color, shape or their combination)
of the neighboring positions. The appearance profile can be
about various gray levels, colors, or geometric primitives, and
the coding methods include De-Bruijn sequences [11]–[13],
M-arrays [14]–[17], and non-formal coding [18]–[21]. The
spacial coding scheme has the advantage that 3-D determi-
nation could be achieved with a single pattern.

Considering the constraints of imperceptible code embed-
ding, we employ the spatial multiplex scheme to design
our pattern. Due to the choice of using binary code for
robust code embedding, the symbols cannot be coded with
different colors. We thus use an alphabet set comprising
three different geometrical primitives: cross, sandglass, and
rhombus, as shown in Fig. 3. There are three advantages of
this configuration. First, all the shapes own a natural center
point, which simplifies the shape identification process in the
decoding stage. Then, there are sufficient variations between
different shapes; even with large disturbance from noise on
the shapes, the decoding method could discriminate them.
Moreover, the directional information carried by the cross

1All the subtraction images in this article are scaled to [0, 255] for
illustration purpose.
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Fig. 3. Primitive shapes. (a) Cross, (b) sandglass, and (c) rhombus.

shape could rectify the observation window in the step of
neighborhood detection without the need of enforcing any
other constraint.

In the decoding stage, the centroid of each detected
primitive would be considered as the feature point position,
and the 9-bit codeword associated to each feature point is
composed of the elements in the 3 × 3 window centered on
it. In traditional structured light methods, the uniqueness of
the codeword is usually assured by M-arrays (perfect maps),
which are random arrays of dimensions r × v in which a
submatrix of dimensions n×m appears only once in the whole
pattern [14]. The M-arrays give a total of rv = 2nm − 1 unique
submatrices in the pattern and a window property of n × m.
However, the Hamming distance between the codewords is 1,
which is generally too small for our code embedding scenario
in which the codeword retrieval errors could be large due to
noise. To increase this value, we employ the method proposed
in [22] to impose an additional constraint so that each window
must remain unique even if the upper corners elements are
missing. Respecting the above mentioned constraints, we
generate the coding matrix through a brute-force approach:
First, a submatrix of 3 × 3 is chosen randomly and is placed
in the north-west vertex of the coding matrix that is being
built. Then consecutive random columns of 1 × 3 are added
to the right of this initial submatrix, fulfilling the constraints.
Afterward, rows of 3 × 1 are added beneath the initial
submatrix in a similar way. Then, both horizontal and vertical
processes are repeated by incrementing the starting coordinates
by one, until the whole coding matrix is filled. Whenever the
process reaches a state where no possible elements can be
placed, the array is cleared and the algorithm starts again with
another initial submatrix. In the end, a matrix of dimensions
27 × 29 is generated, in which 95.97% of the codewords
have a Hamming distance higher than 3 and the average
Hamming distance is H̄ = 6.0084, so that even some bits in the
codeword are missed or incorrectly coded, the codeword is still
distinguishable. On the basis of this matrix, the binary code
image composed of the primitive shapes appears like the one
illustrated in Fig. 4, in which the size of each primitive shape
is a collection of 11×11 pixels while the interval between each
shape is 11 pixels. The total number of feature points is 783.

C. Primitive Shape Identification and Decoding

In the decoding stage, the existence of intense noises (from
projector projection, camera sensing, ambient illumination
and object surface reflection influence) makes it impossible
to segment the primitive shape by the integrated use of
region segmentation and edge or contour detection as often
employed in ordinary structured light methods. Here, we
regard the primitive shapes as objects to identify and detect
rather than segment.

Compared with other object identification or recogni-
tion methods, the machine learning approach proposed by

Fig. 4. Embedded binary code image.

P. Viola [23] has been shown to be capable of processing
images rapidly with high detection rates for visual object
detection. The approach is adopted here for training detector to
identify the three primitive shapes. Below we use cross shape
as an example to describe the procedure of detector training.

The performance of training-based detector has a great
deal to do with the availability of training samples. Unlike
generic objects like human face, body or vehicle, which have
a large number of samples in a great many of public databases,
we have to collect the specific training samples ourselves in
the required configuration. 500 color images with different
contents were collected from Google Image [24], and 40 cross
shapes were embedded in those images at different positions
to generate 500 pairs of projected images and complementary
images.

A white planar projection screen was placed in front of
the projector–camera system with the distance of 800mm, the
orientation of the screen was adjusted to make the projection
area appear as a rectangle, i.e. the projection screen was par-
allel to the projection plane of the projector. By projecting the
images, 500 subtraction images could be derived from image
capture exercises. The subimages containing cross shapes were
then segmented by manual labeling, which were considered
as positive training samples. The background images with
holes filled by random noise were divided into small patches
to generate negative training samples. The training sample
preparation process is shown in Fig. 5.

To obtain the optimal performance, the positive samples
were resized to 20 × 20, the extended haar-like features and
Gentle Adaboost algorithm were employed, following the sug-
gestion in [25]. Eventually, from over 7000 positive samples
and 3000 negative samples, a 16-stage cascade classifier for
cross detection was trained. Following the same procedure, the
detectors for sandglass and rhombus shapes could be derived
as well.

D. Codeword Retrieval

By using the pretrained primitive shape detectors, the cen-
troid of each primitive, i.e., the position of each feature point,
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Fig. 5. Training sample preparation.

can be determined. Once a feature point is extracted from
the image, its codeword can be produced from the associated
3×3 intensity window centered on the feature point. Let ci be
the code of point Pi, P0 can be encoded in a fixed order say
the order of c0-c1-c2-c3-c4-c5-c6-c7-c8 as shown in Fig. 6(a).
Hence, the codeword of P0 is calculated as

CW(P0) =
8∑

i=0

10(8−i) × ci. (5)

It is time-consuming and inefficient for searching the prim-
itive shapes in the whole image, so in pattern design stage,
we choose the cross as one of the three primitive shapes,
since the directional information embraced will speed up the
primitive shapes searching. In decoding stage, if one cross
shape is detected correctly by the pretrained detector, it implies
that the appearance of this cross shape is preserved well. For
this reason, we consider that this embedded cross shape is
projected in one of the piece-wise smooth regions on the
surface and angle between the average surface normal of this
region and the optical axis of the projector (and the camera,
since the projector–camera system is an approximate parallel-
axes configuration) is an acute angle less than 60◦. So in this
region the distortion of the embedded patterns in subtraction
image is not great enough to change the spatial relationship
between neighborhood shapes. Hence, the directional informa-
tion embraced in the cross shape could be adopted to rectify
the search window around it to find the other two shapes. As
illustrated Fig. 6 (a), the cross shapes are detected first, then
two directions are fitted through the intensity distributions in
the detected rectangle, and in the end, rhombus and sandglass
shapes are detected in the nearby area along the two directions.
The corresponding point on the projector image plane is
known a priori.

Once the correspondence problem is solved, the depth zc of
the associated scene point can be determined via traditional
triangulation algorithm [26] as

zc =
(Rm̃c · m̃p)(m̃p · T) − ||m̃p||2(Rm̃c · T)

||Rm̃c||2||m̃p||2 − (Rm̃c · m̃p)2
(6)

where m̃c and m̃p refer to the two corresponding points on
the camera’s and projector’s image planes, respectively, in

Fig. 6. Codeword retrieval: (a) one example and (b) coding order.

Fig. 7. Hardware configuration of two projector–camera systems.
(a) PROCAMS-A and (b) PROCAMS-B.

homogeneous coordinates, whilst R and T are the rotation
matrix and translation vector between the camera and projector
coordinate system, respectively. The above is the 3-D sensing
step we use in the system.

IV. Experiments

A. Overview of Experiment Setup

To assess the feasibility of the proposed method for embed-
ding imperceptible codes in regular projection, we conducted
experiments on embedded code imperceptibility evaluation,
primitive shape detector accuracy evaluation and primitive
shape detector sensitivity evaluation.

In order to evaluate the performance of our method in
different platforms, we set up two projector–camera systems
using different equipment. The first one (PROCAMS-A) con-
sisted of a consumer-level DLP projector (Mitsubishi EX240U
projector) of 1024 × 768 resolution and 120Hz refresh rate,
and a CMOS camera (Point Grey Flea 3 FL3-U3-13S2C with
Myutron FV1520 f15mm lens) of 1328×1048 resolution and
120fps, while the second one (PROCAMS-B) consisted of a
Pico DLP projector with a native resolution of 640 × 480 and
an interface for firmware configuration (TI DLP Pico Projector
Development Kit 2 [27]), plus a CCD camera of 648 × 488
resolution at 120fps (Point Grey FL3-FW-03S1C camera with
Myutron FV0622 f6mm lens).

For PROCAMS-A, we first fixed the camera and projector
rigidly, and the projector and camera were connected to
a desktop computer through VGA and USB3.0 interfaces,
respectively. Since there was no synchronization signal output
in the consumer-level projector, the synchronization between
projectors and cameras was implemented through software
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delay. The hardware configuration is shown in Fig. 7(a). For
PROCAMS-B, the projector and camera were mounted on a
special designed framework rigidly, and were connected to
a laptop computer through HDMI and IEEE-1394 interfaces,
respectively, and the hardware trigger signal of the camera was
connected to the sync. output of the projector for synchroniza-
tion between them, which are illustrated in Fig. 7(b).

Moreover, the projector–camera systems were calibrated
using an LCD monitor as the calibration object; the calibration
method, detailed in [28], could derive the intrinsic and extrin-
sic parameters of the two instruments. Once the experimental
system was set up and calibrated, we could conduct further
experiments.

B. Embedded Code Imperceptibility Evaluation

Embedded code imperceptibility and user satisfaction are
of the first priority in the system design. The imperceptibility
depends on the embedded intensity. We conducted a subjective
evaluation using PROCAMS-A based on a questionnaire. Ten
persons were invited to participate in this experiment, of which
six were male and four were female, and seven wearing
glasses. Another 500 images were collected from Google
Image [24] randomly, the content of the images included
natural scene, portrait, architecture, animals and so on. Our
proposed pattern was embedded into all the collected images
with different intensities. The viewers were seated in front
of a white planar screen at a distance of about 1m, and
asked to comment on the images projected to the screen. The
questions asked were simplified from the questionnaire in [8],
focusing on the feeling of flickering, the recognition of image
deterioration, and the overall satisfaction for projection quality.
The score for each question was divided into ten levels.

The average scores of the subjective evaluation are illus-
trated in Fig. 8. When the embedded intensity is small, i.e.,
� = 5, 10, the viewer could rarely notice the embedded
codes and were satisfied with the projection quality. With
the increase of the embedded intensity, the viewers’ sense
of flickering and image degradation became stronger. When
� = 25, almost every viewer was not satisfied with the
projection quality.

In practice, because it was difficult to retrieve weakly
embedded codes with the standard commercial cameras, we
choose � = 10 in our configuration, striking a compromise
between user satisfaction and code imperceptibility.

C. Primitive Shape Detection Accuracy Evaluation

After embedded code imperceptibility evaluation, the ex-
periments for primitive shape detection accuracy were carried
out. Considering the training data for primitive shape detector
training was collected by PROCAMS-A, we first evaluated the
primitive shape detection accuracy on PROCAMS-A.

To assess accuracy, the experimental data with ground-truth
were required. Three different primitives and the spatially
coded pattern image were embedded into 500 images used
for imperceptibility evaluation, respectively, with intensity
� = 10. Then the projected and complementary images
were projected successively to a projection surface, while

Fig. 8. Subjective evaluation results for code imperceptibility.

the camera conducted synchronized capture. The projection
surface was the same as the one used for training data
collection. Then the subtraction images embracing embedded
codes information were derived for accuracy evaluation. The
ground-truth was obtained by manual labeling in the image
data captured under binary pattern illumination.

Experimental results in some subtraction images are pre-
sented in Fig. 9. The four subfigures display the cross
[Fig. 9(a)], sandglass [Fig. 9(b)], rhombus [Fig. 9(c)] shapes,
and the spatially coded pattern [Fig. 9(d)], respectively. For
qualitative evaluation, the detected features are indicated by
rectangles, and in the bottom-right subfigure, the cross, sand-
glass and rhombus shapes are separately marked by red, green,
and blue rectangles. As described in [6], when the system is
calibrated, the precision of 3-D reconstruction is determined
by the correct correspondences establishment and the accuracy
of corresponding points. Moreover, the correspondence is
established by the detection and identification of the embedded
primitive shapes. In the end, the performance of the system
depends on the accuracy of primitive detectors, which are
evaluated by hit rate (H), missing rate (M), false rate (F )
and position error (Ed), which are formulated as

H =
Nh

Nt

(7)

M =
Nm

Nt

(8)

F =
Nf

Nt

(9)

Ed =
√

ε2
X + ε2

Y (10)

εX =
1

Nh

N∑
i=1

|Xd − Xg|i (11)

εY =
1

Nh

N∑
i=1

|Yd − Yg|i (12)

where Nt is the total embedded primitive shape number, Nh,
Nm, and Nf are the number of correct detections, missed
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Fig. 9. Some qualitative experiment results on accuracy evaluation. (a) Cross shape detection. (b) Sandglass shape detection. (c) Rhombus shape detection.
(d) Spatially coded pattern detection. The cross, sandglass, and rhombus shapes are separately marked by red, green, and blue rectangles.

TABLE I

Benchmark for Sensitivity Evaluation

H(%) M(%) F(%) Ed (pixel) Corr. Acc.(%)
Cross 94.53 3.95 1.52 1.632 —
Rhombus 95.21 3.59 1.20 1.833 —
Sandglass 95.50 3.63 0.87 1.542 —
Whole Pattern 92.11 11.06 5.28 2.013 95.74

detections and false detections, respectively. εX and εY are
the average feature point detection errors along the x-axis and
y-axis, (Xd, Yd) and (Xg, Yg) are the detected coordinate and
ground-truth, respectively.

The more detailed quantitative testing results are listed
in Table I. Through the proposed method, 95.74% of the
embedded feature points could their correspondences found
correctly. By analyzing the missed and false detection cases,
we find that the mistakes were mainly caused by large noise
that occludes the embedded codes, implying that external noise
has the greatest influence on the decoding process.

D. Robustness Evaluation

Due to the low signal-to-noise ratio property in impercepti-
ble structured light sensing scenario, the embedded primitive
shapes in the subtraction image are prone to be disturbed by
the noises. Although our pretrained shape detectors have good
anti-noise feature, some of primitive shapes are still missed
or detected falsely, as shown in Table I. In order to obtain
robust decoding, the larger Hamming distance is necessary in
encoding stage, which ensures that correspondences can be
still established correctly even if some bits in the codeword
are unknown or wrong.

In this subsection, we compare the performances of dif-
ferent coding schemes with different Hamming distances on
PROCAMS-A. Firstly, we followed the approach described in
Section III-B to generate five coded pattern images with fixed
Hamming distance Hd = 1, . . . , 5. The new generated pattern
images have the same dimension as our proposed pattern
image. These coded pattern images were embedded into 500
images used for imperceptibility evaluation, respectively, with
intensity � = 10. Next, just like the experiment of primitive
shape detection evaluation, the projected and complementary
images were projected successively to a projection surface,
while the camera conducted synchronized capture. The projec-
tion surface was the same as that in primitive shape detection
evaluation. Eventually, the subtraction images embracing dif-
ferent embedded codes were derived for robustness evaluation.

Fig. 10. Correspondence accuracy in different Hamming distance coding.

The ground-truth was obtained by manual labeling in the
image data captured under regular binary pattern illumination.

Experimental results are illustrated in Fig. 10. When Ham-
ming distance Hd = 1, which is adopted in traditional M-
array coding approaches, in ISL only 39.15% of feature points
could find their correspondences correctly. With the increase of
Hamming distance, the correspondence accuracy is improved
remarkably and in our proposed pattern, when the average
Hamming distance H̄d = 6, the correspondences accuracy
reaches 95.74%. Moreover, from the error bar, it is evident
that the larger the Hamming distance is, the more robust the
performance will be to the variations of projection surface and
projected image.

E. Efficiency Evaluation

For some application scenarios, such as sensing moving or
deformable objects, real-time performance is of great impor-
tance. Hence we implemented the proposed system in C++
using the Intel OpenCV Library [29] to evaluate its process-
ing time. Through multithread programming, the projection-
capture process and calculation process were executed in two
different threads, respectively, each of which was able to run in
real time in a desktop computer with Intel Core i5-760 2.8GHz
CPU. Table II shows the average processing times for primitive
shape detection, correspondence searching, and triangulation
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TABLE II

Average Processing Time for the 3-D Sensing Procedure

Subroutine Time (ms/frame)
High Resolution (1024 × 768) Low Resolution (640 × 480)
w/ D.S. w/o D.S. w/ D.S. w/o D.S.

Primitive Shape Detection 24.21 68.37 13.95 25.34
Correspondence Searching 4.53 4.46 4.47 4.49
Triangulation 3.12 3.12 3.16 3.13
Total 31.86 75.95 21.58 32.96

in the given system. Primitive shape detection is the most
time-consuming process. Due to the searching characteristic of
AdaBoost-based detector, the processing times varied accord-
ing to image resolution. However, they all satisfied the require-
ment of real-time application. We conducted experiments that
use cross shape embracing directional information in searching
(D.S.) and which do not, respectively, the results shown in
Table II indicate that the directional information could speed
up primitive shape detection notably, especially in the high
resolution case.

V. Sensitivity Evaluation

It is obvious that the performance of our method depends
on the performance of pretrained primitive shape detectors,
which is determined by the training process to a great extent.
Generally, for the training-based methods, generalization of
the training results is an issue, especially, when the scenarios
between training stage and operation stage are quite different.

In the framework of our method, due to the different sensor-
object localization, different projection surfaces, different sur-
rounding environment and different hardware platforms, the
generalization of the pretrained detector is of great importance,
since it is both impractical and impossible to retrain the
detector for different scenarios. It is necessary to certify the
validity of our method in different application scenarios.

In this section, we will evaluate the the sensitivity of
primitive detectors under different circumstances, including
variations on working distance, projection surface orientation,
projection surface shape, projection surface texture and hard-
ware configuration. Since the settings of accuracy evaluation in
Section IV-C are the same as training sample collection stage,
the results are considered as the benchmark for sensitivity
evaluation.

A. Working Distance

The working distance is the average distance from the
projector–camera system to the object surface. When the
intrinsic parameters of the projector and camera (focal length
and resolution) are fixed, the size of the primitive shapes in
subtraction image data is determined by the working distance
directly. In the configuration of training stage, the working
distance is set as 800mm, the size of primitive shapes in image
data is about 20 pixels. In the operation stage, the working
distance is changed to 500mm, 1200mm, and 1600mm, the
focal length of procams is slightly adjusted to get sharp
projection and clear capture. Some subtraction images with

Fig. 11. Cross shape detection in different working distances. (a) 500mm,
(b) 1200mm, and (c) 1600mm.

TABLE III

Primitive Shape Detection Accuracy in

Different Working Distances

Distance Pri. H(%) M(%) F(%) Ed (pixel)

500mm

C 86.21 11.63 2.16 1.814
R 85.83 12.57 1.60 1.836
S 87.49 11.64 0.87 1.712

1200mm

C 94.44 4.32 1.24 1.728
R 94.86 4.23 0.91 1.904
S 94.49 4.62 0.89 1.572

1600mm

C 94.52 4.11 1.37 1.731
R 95.06 3.92 1.02 1.910
S 95.39 3.68 0.93 1.591

detection results are shown in Fig. 11; the size of the primitive
shapes are around 15, 35, and 45 pixels, respectively.

The detailed quantitative results are listed in Table III. It
is clear that when the working distance decreased to 500mm,
the hit rates dropped, because it is difficult for primitive shape
detectors to find small size shapes in image data. For the
enlarged shapes in larger working distance, the performance
of detectors are almost the same as those of the benchmark.

B. Projection Surface Orientation

Besides the size of the primitive shapes in image data,
the distortions will also influence the performance of the
pretrained detectors. The distortions mainly come from the
variations on the orientation of the projection surface with
respect to the sensing system and the variations on the shape
of the projection surface. First, the detector accuracy will be
evaluated under different projection surface orientations.

In the training data collection stage, the images were
projected to a planar surface that is almost parallel to the
image plane of the camera. Now in the operation stage,
the orientation of the surface is adjusted to 10◦, 20◦, 30◦,
40◦, 50◦ in the yaw direction, as shown in Fig. 12. In each
subimage, the upper part is the captured image to show the
extent of distortion, while the lower part is the magnified
subtraction image of the subregion indicated by the rectangle
in captured image. The detection results are also shown in
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Fig. 12. Rhombus shape detection in projection surface under different orientations. (a) 10◦. (b) 20◦. (c) 30◦. (d) 40◦. (e) 50◦.

TABLE IV

Primitive Shape Detection Accuracy Under

Different Surface Orientations

Orientation Pri. H(%) M(%) F(%) Ed (pixel)

10◦
C 94.51 3.96 1.53 1.635
R 95.08 3.60 1.22 1.845
S 95.46 3.74 0.80 1.544

20◦
C 94.50 3.96 1.54 1.634
R 95.08 3.64 1.08 1.848
S 95.43 3.77 0.80 1.564

30◦
C 93.47 4.50 2.03 1.938
R 92.15 6.37 1.48 2.141
S 92.43 6.78 0.79 2.011

40◦
C 90.19 7.70 2.11 2.414
R 89.42 9.50 1.08 2.809
S 91.23 7.87 0.90 2.374

50◦
C 85.91 12.03 2.06 2.728
R 85.48 12.81 1.71 2.904
S 86.87 12.27 0.86 2.572

the subtraction images. More detailed quantitative results are
listed in Table IV.

In the testing results, when the rotation degree θ is small,
i.e., θ = 10◦, 20◦, the performance is almost the same as those
of the benchmark. With the increase of the rotation degree,
the hit rates decrease slightly. When θ = 50◦, more than 85%
primitive shapes are still detected correctly, which satisfies the
application requirements.

C. Projection Surface Shape

The alteration of projection surface shape will also result
in the distortion of primitive shapes in the image data. In the
training stage, the negative and positive sample were collected
from the images projected to a planar surface. In this test,
the projection surface are three different non-planar surfaces
(convex paper, concave paper and plaster statue). Some test
images and the statistical results are shown in Fig. 13 and
Table V, respectively. In all three surfaces, although the hit
rates have small decrease, it is still sufficient to derive correct
correspondences for triangulation. In the plaster statue case,
the missing detections are mainly found in the regions where
the surface has sudden change.

D. Projection Surface Texture

The texture on the projection surface will affect the quality
of captured images. In the benchmark training stage, the

Fig. 13. Cross shape detection from different projection surfaces. (a) Convex
paper. (b) Concave paper. (c) Plaster statue.

TABLE V

Primitive Shape Detection Accuracy from Projection

Surfaces of Different Shapes

Surface Pri. H(%) M(%) F(%) Ed (pixel)

Convex Paper
C 93.53 4.86 1.61 1.756
R 93.25 5.29 1.46 2.043
S 94.14 4.85 1.01 2.122

Concave Paper
C 93.64 4.84 1.52 1.762
R 93.82 4.70 1.48 2.108
S 93.76 5.41 0.83 2.135

Plaster Statue
C 84.81 13.33 1.86 2.028
R 85.73 13.06 1.21 1.904
S 86.09 13.03 0.88 2.075

projection surface is texture-free and in white color. In the
operation stage (this test), the images are projected to a planar
surface in green color, a cork board and a poster with text
and images, as illustrated in Fig. 14. The quantitative results
are listed in Table VI. The results indicate that the texture
variation on the projection surface has little influence on the
performance of the primitive shape detectors, since in our
method the decoding process was conducted in the subtraction
image, which reduces the texture’s influence substantially.

E. Projector–Camera System

If the pretrained detectors are used in another application
with different hardware configuration, the performance of
the detectors would be affected, since the differences in the
resolution of the projector and camera (high versus low),
the camera sensor (CCD versus CMOS), and the optical
parameters (different lenses) will change the appearance of the
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Fig. 14. Sandglass shape detection in different projection surface textures.
(a) Green paper. (b) Cork board. (c) Poster.

TABLE VI

Primitive Shape Detection Accuracy in Different

Projection Surface Texture

Texture Pri. H(%) M(%) F(%) Ed (pixel)

Green Paper
C 94.41 4.17 1.42 1.634
R 95.19 3.66 1.15 1.836
S 95.49 3.63 0.88 1.558

Cork Board
C 93.41 5.07 1.52 1.641
R 94.25 4.43 1.32 1.850
S 94.92 4.16 0.92 1.623

Poster
C 91.74 6.63 1.63 2.024
R 90.28 8.25 1.47 1.996
S 92.19 6.76 1.05 1.762

Fig. 15. Primitive shape detection in PROCAMS-B with different embed-
ding approaches. (a) Captured image. (b) Cropped pattern. (c) Resized pattern.

primitive shape in the image data. In this test, the primitive
detectors trained by the data collected from PROCAMS-A were
applied to PROCAMS-B in the operation stage.

Due to the low projector resolution in PROCAMS-B, the
dimension of the original pattern image was too large for
embedding. We employed two methods to solve the issue. The
first one was to select a subregion of the original pattern image
as a new pattern image and the second one was to resize the
original pattern image to coincide with the projector resolution.
Some detection results in the subtraction images derived
from the two different embedding methods are illustrated in
Fig. 15(b) and (c). The quantitative results are also shown in
Table VII.

Fig. 16. Comparison experiment on sensing sphere object. (a) GSL illumi-
nation. (b) ISL illumination. (c) Reconstruction result of ISL.

Fig. 17. Comparison experiment on sensing cone object. (a) GSL illumina-
tion. (b) ISL illumination. c) Reconstruction result of ISL.

Fig. 18. Comparison experiment on sensing cylinder object. (a) GSL illu-
mination. (b) ISL illumination. (c) Reconstruction result of ISL.

Compared with the benchmark, it is obvious that the per-
formance in PROCAMS-B degraded intensively, especially in
the resized pattern case. By analyzing the missed and false
detection cases, we found that the mistakes were mainly
caused by large noise from the low luminance of the pico
projector and the extremely small primitive shapes in the
image data.

VI. Applications

The proposed method enables a common projector to serve
the dual role of a display device as well as a 3-D sensor,
which can be extended or integrated to many applications.
In this section, we will show three cases to demonstrate the
feasibility of our method.

A. 3-D Reconstruction with Regular Video Projection

3-D reconstruction is the most straightforward application
for SLS. To show the effectiveness of our method in 3-D
reconstruction task, we compared our method with the general
structured light method that uses visible patterns.

As shown in Figs. 16(a), 17(a), 18(a), and Figs. 16(b), 17(b),
18(b), three objects (sphere, cone, and cylinder) with known
dimensions were illuminated by visible binary pattern image
(the same as Fig. 4) and code embedded normal projection,
respectively.

In the general structured light scenario, feature points were
extracted by segmentation and shape identification using the
method proposed in [22], whilst in our code embedded regular
projection scenario, feature points were detected and classified
through the pretrained primitive shape detectors. The depth
value of each feature point was calculated through triangula-
tion using the intrinsic and extrinsic parameters of projector
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Fig. 19. Some 3-D sensing results on mobile robot. (a) ISL on green tea can. (b) Recovered surface of green tea can. (c) ISL on toy bricks. (d) Recovered
surface of toy bricks.

TABLE VII

Primitive Shape Detection Accuracy in PROCAMS-B with

Different Embedding Approaches

Pri. H(%) M(%) F(%) Ed (pixel)

Cropped Pat.
C 80.23 14.43 5.34 3.028
R 79.93 14.17 5.92 2.981
S 81.09 13.28 5.63 2.812

Resized Pat.
C 30.52 59.23 10.25 2.628
R 30.63 58.03 11.34 2.913
S 30.80 57.93 11.27 2.874

TABLE VIII

Comparison of 3-D Reconstruction Accuracies

Object
General SL [22] Our Method

Eμ(mm) Eσ (mm) Eμ(mm) Eσ (mm)
Sphere 1.502 0.576 1.410 0.587
Cylinder 2.054 0.824 1.939 0.762
Cone 1.383 0.557 1.391 0.564

and camera. Then on the basis of point clouds calculated
through our method, surfaces were rendered as illustrated in
Figs. 16(c), 17(c), and 18(c). Since the dimensions of the
objects were known, we could conduct quantitative accuracy
assessment. The residual mean error Eμ and standard deviation
Eσ of the calculated 3-D points with respect to ground-truth
are listed in Table VIII. It is evident that our method has almost
the same performance as that of the general structured light
method in 3-D reconstruction. By the reason that textures on
the cylindrical object obstruct code retrieval, the reconstruction
error on the cylindrical object is greater than those of the
other two objects. It is worth pointing out that in our method
the decoding process was conducted in the subtraction image,
which would reduce the texture influence.

B. Sensing Surrounding Environment on Mobile Robot
Platform

For the purpose of illustrating the proposed method’s
potential applications in robotic system working in varied
environment, we mounted a projector and a camera rigidly
on a specially designed frame, and fixed the frame to a
tripod affixed to a mobile robot manufactured by ARRICK
Robotics [30], as shown in Fig. 20(a).

For a mobile robot, one of the essential capabilities is to
sense the surrounding environment for navigation, obstacle
avoidance, object recognition and some other purposes. We as-
sist the visual sensing through a normal grey illumination with

Fig. 20. Touch-sensitive user interface on projection surface. (a) Integration
with mobile robot system and application scene. (b) User interface image.
(c) User’s click action on projected interface.

invisible codes embedded. By retrieving the embedded codes,
correspondences between projection plane and image plane
could be established accurately and efficiently. In Figs. 19(a)
and (c), a green tea can and toy bricks were located in the
illumination area of the projector, and 3-D depth information
of certain points on the objects was acquired through simple
triangulation in real-time. The surfaces of the objects were
rendered in 3-D as shown in Figs. 19(b) and (d). Although
the ground truth of the objects was not available, qualitative
examination showed that the reconstructed surfaces were of
reasonable quality.

C. Natural Human–Computer Interaction

Besides sensing capabilities, the mobile robot should also
provide an effective channel for the interaction between users,
such as an interface for system configuration or a display panel
to show prompt information. Traditionally, an LCD monitor
plus mouse-and-keyboard or an LCD touch-screen attached to
the robot is used, which would inevitably increases the weight
and size of the mobile robot, plus energy consumption. Our
method enables a common projector to serve the dual role of
a display device as well as a 3-D sensor with the assistance of
camera, providing a platform for more natural user interface
schemes. As shown in Fig. 20(a), a system configuration
interface [Fig. 20(b)] was projected onto a desk surface, and
a user was operating on the projected desk surface with bare-
hand [Fig. 20(c)]. From an image alone, say of a finger on top
of a table surface, one cannot tell whether the finger is actually
touching the table surface or not. The case of a finger hanging
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in air, and the case of a finger touching the table surface, could
both produce the same image to the camera. By incorporating
the structured light invisible embedded into the projection,
3-D acquisition can be made possible, and contact identi-
fication and finger movement recognition could be readily
tackled.2 It is possible to convert any textureless light color
plane (table-surfaces, whiteboards or walls) to a touching
sensitive screen, providing more natural and flexible interface
for bare-hand human-robot interaction.

VII. Conclusion

We described a novel system of embedding imperceptible
structured codes into normal projection that strikes the bal-
ance between imperceptibility and detectability of the codes.
Through precise projector–camera synchronization, structured
codes consisting of three primitive shapes were embedded
into regular projection, in a way that is imperceptible to
the user but extractable by a camera (through the difference
image between successive images). The disturbances caused
by external noise made it difficult to retrieve the codes by the
region segmentation approaches adopted in general structured
light-based systems. Instead of segmenting the codes, specially
trained classifiers were employed to detect and identify them.
To increase the robustness of code extraction, large Hamming
distance was adopted in spatial coding. Even if some bits
were missed or wrongly decoded, the correct correspondence
between the projection panel and the image plane could still
be arrived at correctly for structured light sensing. Extensive
evaluations showed that the method is a promising one.

In the current system, the image capture interval is 10ms.
In sensing object that moves fast, the substantial displacement
between successive images will result in blur or destruction
of the embedded codes in the difference image. Some com-
pensation methods need be in place to deal with the issue and
when the method is applied in the projector–camera system
with low resolution, due to the low quality of the subtraction
image, the performance deteriorates dramatically. Some image
enhancement methods should be studied as the preprocessing
step for primitive shape detection. In addition, the embedded
code could be denser for more precise 3-D sensing. New
coding scheme capable of generating denser patterns should
be used. The proposed method enabled a common projector
to serve the dual role of a display device as well as a 3-D
sensor. That provides a platform for more natural user interface
schemes. Our future work will lie on these directions.
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