

Use of Projector-Camera System for Human-Computer Interaction

Ph.D. Oral Defense

DAI, Jingwen

Thursday, Sept. 6th 2012 Computer Vision Lab, Mechanical and Automation Engineering, The Chinese University of Hong Kong

Thesis Supervisor: Prof. Ronald Chung Committee Members: Prof. Yun-hui Liu

Prof. Charlie C.L. Wang

Prof. Edmund Lam (University of Hong Kong)

Contents

- Motivation & Challenges
- Head Pose Estimation by ISL
- Embedding Invisible Codes into Regular Video Projection
- Hand Segmentation in ProCams
- Touch-Sensitive Display in Arbitrary Planar Surface
- Conclusion and Future Work

Motivation

- Display
 - Projector-based display systems

[Shanghai Expo 2010]

- Display
 - Geometric and radiometric calibration

[Fujii2005]

Scene Capture

Structured-light systems for scene

- Scene Capture
 - 3D geometry, reflectance, and motion capture

[Zhang2003]

- Augmentation
 - Spatially augmented reality

[Raskar1999]

- Interaction
 - Novel interfaces

[PlayAnywhere2005]

[OmniTouch2011]

- Interaction
 - Multiple user interaction

[SmartSkin2002]

Mobility

[SidebySide2011]

[Cao2007]

[SixthSense2009]

Pico Projector in Mobile Devices

PROCAMS Structured Light Sensing 3D Point Clouds Task in 3D HCI Infer User Action

Challenges

- Simultaneous Display and Acquisition (Ch 4)
- 3D Information Interpretation (Ch2, Ch6)
- Segmentation (Ch5)
- Posture Recognition (Ch6)

Contents

- Motivation & Challenges
- Head Pose Estimation by ISL
- Embedding Invisible Codes into Regular Video Projection
- Hand Segmentation in ProCams
- Touch-Sensitive Display in Arbitrary Planar Surface
- Conclusion and Future Work

Previous Work

Image- or Video-Based

Head Pose Estimation

- Appearance Template Matching
- Detector Array
- Geometric Methods
- Flexible Models
- Nonlinear Regression Methods
- Tracking Methods
- Hybrid Methods

Head pose is in 3D domain, so the use of 3D information is more direct and accurate for pose estimation.

Overview

Pattern Projection Strategy for Imperceptible Structured Light Sensing

Facial Feature Localization

■ In Scene-texture Image, localize 2D Positions of

Key Facial Feature Points;

Adaboost for Face Detection

AAM (Active Appearance Model)25 points

- In Pattern-illuminated Image, determine 3D Positions of Grid Points;
 - Traditional structured-light approach

Inferring 3D Positions of Key Facial Features

$$\overline{X} = \sum_{i=1}^{N} \alpha_i X_i,$$

$$\alpha_i = \frac{d_i}{\sum_{j=1}^{N} d_j}.$$

6-DOF Head Pose Estimation

Singular Value Decomposition (SVD) of a correlation matrix composed by corresponding point pairs.

$$H = \sum_{i=1}^N p'_{c_i} p_{c_i}{}^T = U \Lambda V^T$$

$$p_{c_i} = p_i - \bar{p}, \ p'_{c_i} = p'_i - \bar{p}'$$

$$\hat{R}otation \qquad \hat{R} = U V^T,$$

$$Translation \qquad \hat{T} = \bar{p}' - \hat{R}\bar{p}.$$

If more than three non-colinear corresponding point pairs are known, R & T are determined uniquely.

Experiment Results

Mean Absolute Error:

Yaw - 2.02 degree

Pitch - 1.18 degree

Roll - 0.75 degree

Similar to systems using stereo methods.

Summary

- Pattern-illuminated
 Image & Scene texture Image
- 2D Facial Feature Points & 3D Grid Points

Contents

- Motivation & Challenges
- Head Pose Estimation by ISL
- Embedding Invisible Codes into Regular Video Projection
- Hand Segmentation in ProCams
- Touch-Sensitive Display in Arbitrary Planar Surface
- Conclusion and Future Work

Previews Works

- Non-Visible Spectrum (Infrared)
 - □ IR Projector + IR Camera (Kinect)
 - Regular Projector and Camera + IR Filters
- Imperceptible Structured Light (ISL)
 - □ [Raskar1998] fist proof of ISL
 - [Cotting2004] micro-mirror states in DLP
 - [Park2007] intensity adaption in YIQ color space
 - [Grundhofer2007] human contrast sensitivity function
 - [Park2010] subjective evaluation for ISL

To the best of our knowledge, few works focus on the decoding method in imperceptible code embedding configuration.

Principle of Embedding Imperceptible Codes

09/06/2012
$$S(x,y) = \max_{i} [C_i(x,y) - C'_i(x,y)], i = \{R,G,B\}.$$
 26/75

Design of Embedded Pattern

- Primitive Shapes
 - Cross
 - Sandglass
 - Rhombus

Design of Embedded Pattern

Pattern Image

- □ Size: 27 * 29 = 783
- $\bar{H} = 6.0084$
- □ 95.97% $(H \ge 3)$

Primitive Shape Identification and Decoding

Adaboost Training

- Harr-Like Features
- Positive Sample Size20 * 20
- Pos./ Neg. Sample Num.7000 / 3000

 16-stage cascade classifier

Codeword Retrieval

Experiments - System Setup

PROCAMS-A

PROCAMS-B

Experiments - Imperceptibility Evaluation

Experiments - Primitive Shape Detection Accuracy Evaluation

	H(%)	M(%)	F(%)	$E_d(pixel)$	Corr. Acc.(%)
Cross	94.53	3.95	1.52	1.632	
Rhombus	95.21	3.59	1.20	1.833	_
Sandglass	95.50	3.63	0.87	1.542	
Whole Pattern	92.11	11.06	5.28	2.013	95.74

Sensitivity Evaluation

Training Stage

Operation Stage

Sensor-Object Localization

Projection Surfaces

Surrounding Environment

Hardware Platforms

Sensitivity Evaluation: Working Distance

In training data collection: Working distance: 800mm

500mm

1200mm

1600mm

Sensitivity Evaluation: Surface Projection Surface Orientation

In training data collection: Surface Orientation: $\theta = 0^{\circ}$

Sensitivity Evaluation: Projection Surface Shape

In training data collection: Projection Surface: Planar

Sensitivity Evaluation: Projection Surface Texture

In training data collection: Working distance: 800mm

Sensitivity Evaluation: PROCAMS

In training data collection: PROCAMS: PROCAMS-A

Captured Image

Cropped Patt.

Resized Patt.

Sensitivity Evaluation: Conclusion

Condition	Hits (%)	Missed (%)	False (%)	Ed (pixel)
Benchmark	94.53	3.95	1.52	1.632
Distance (500mm)	86.21	11.63	2.16	1.814
Orientation (50 degree)	85.91	12.03	2.06	2.728
Surface (Plaster Statue)	84.81	13.33	1.86	2.028
Texture (Poster)	91.74	6.63	1.63	2.024
PROCAMS (Cropped Pattern)	80.23	14.43	5.34	3.028

For more detailed sensitivity evaluation results, please refer to the chapter 4.5 in thesis

Applications: 3D Reconstruction

3D Reconstruction with Regular Video Projection

3D reconstruction accuracies on different objects

Object	General SL [10]		Our Method	
	$E_{\mu}(mm)$	$E_{\sigma}(mm)$	$E_{\mu}(mm)$	$E_{\sigma}(mm)$
Sphere	1.502	0.576	1.410	0.587
Cylinder	2.054	0.824	1.939	0.762
Cone	1.383	0.557	1.391	0.564

Applications: Mobile Robot Platform

Applications: Mobile Robot Platform

Summary

Noise-Tolerance Scheme

Coding

☐ specifically designed shapes ☐ large hamming distance

Decoding

☐ Pre-trained shape detector

Contents

- Motivation & Challenges
- Head Pose Estimation by ISL
- Embedding Invisible Codes into Regular Video Projection
- Hand Segmentation in ProCams
- Touch-Sensitive Display in Arbitrary Planar Surface
- Conclusion and Future Work

Background

- Skin-color
- Background Subtraction
- Graph-based Approaches
- Additional Sensors (inferred camera, stereo camera, depth camera).

Saliency Detection

- Saliency Detection
 - Emphasizing the largest salient objects
 - Uniformly highlighting whole salient regions
 - Disregarding artifacts arising from projection content and ambient illumination
 - Accomplishing detection less than 15ms

Histogram-based Contrast Saliency

Saliency = color contrast to all other pixels

$$S(I_k) = \sum_{i=1}^{N} D(I_k, I_i)$$

Note: Some implementation issues are detailed in [Cheng2011].

Mean-Shift Region Smoothing

- Mean-Shift based smoothing in the regions that are highlighted.
- The image is divided into several candidate partitions, while the boundary of the hand is preserved well.

Precise Segmentation by Fusing

Confidence Function

$$C_F(k) = \frac{1}{e^{(L-1)}} [\alpha \bar{S}(k) + \beta \bar{S}_N(k) + \gamma A(k)]$$

Experiments

Results

Precision-Recall bars for hand segmentation using different methods. Our method shows high precision, recall and F-Bata values.

Summary

 Combine Contrast Saliency and Region Discontinuity for Precise Hand Segmentation in PROCAMS

Contents

- Motivation & Challenges
- Head Pose Estimation by ISL
- Embedding Invisible Codes into Regular Video Projection
- Hand Segmentation in ProCams
- Touch-Sensitive Display in Arbitrary Planar Surface
- Conclusion and Future Work

Motivation

VS.

Single Image 3D Action

Previews Works

Additional Sensors

- Light Touch (IR optical sensors)
- Diamondtouch (capacitive sensor array)
- Smartskin (mesh-shaped antenna)
- Skinput (bio-acoustic sensing array)
- LightSpace, Omnitouch (Kinect)

Computer Vision

- [Letessier2004] -- Fingertip tracking, not touching detection
- □ [Kjeldsen2002, Hardenberg2001] -- Delay-based scheme
- □ [Marshall2008] Color change of the fingernail
- [Song2007, PlayAnywhere2005] -- Shadow casted by finger
- □ [Fitriani2007] -- Deformation on soft surface

Overview

Priors in Projector-Camera System

Geometric (Homography)

This geometric priors can be derived through 2 projection-capture cycle in initialization stage.

Embedded Pattern Design Strategy

Method	Array Size	Win. Size	Alph. Length
[Morita 1988]	24 * 24	3 * 4	2
[Kiyasu 1995]	18 * 18	4 * 2	2
[Salvi 1998]	29 * 29	3 * 3	3
[Spoelder 2000]	65 * 63	2 * 3	2
[Dai 2012]	27 * 29	3 * 3	3
[Desjardins 2007]	53 * 38	3 * 3	3
[Chen 2008]	82 * 82	3 * 3	7

Summary of typical spatial coding methods

Constraints of Pattern Generation

- Code Uniqueness
- Large Hamming Distance

Hand Segmentation & Fingertip Detection

Touch Detection Through Homography and Embedded Codes

Third-Person Perspective

From Resistive Touch to Capacitive Touch or Floating Touch

Experiments Touch Accuracy Evaluation

Experiments Touch Accuracy Evaluation

		Illumi	nation	
Surface	Dark		Normal	
	$\epsilon(px)$	FRR/FAR(%)	$\epsilon(px)$	FRR/FAR(%)
Gray	2.98	1.12/0.45	3.05	1.32/0.48
Yellow	3.04	1.23/0.57	3.12	1.54/0.61
Artifact	3.12	1.77/0.67	3.20	1.76/0.63

Comparison with recent depth-camera sensing based methods

In [Wilson 2010], the informal observed spatial error of finger detection on planar surface was between 3-6 pixels,

In [Omni-Touch 2011], the FRR and FAR of finger click detection on four different surfaces were 0.8% and 3.3%.

Experiments Trajectory Tracking

Video

Experiments Multiple-Touch

Summary

- Using only offthe-shelf devices
- Achieving 3D sensing without explicit 3D reconstruction
- Use of prior knowledge to pixel-wise coding

Contents

- Motivation & Challenges
- Head Pose Estimation by ISL
- Embedding Invisible Codes into Regular Video Projection
- Hand Segmentation in ProCams
- Touch-Sensitive Display in Arbitrary Planar Surface
- Conclusion and Future Work

Conclusion and Contribution

- A novel 6-DOF head pose estimation approach by imperceptible structured light sensing.
 - Combine 2D & 3D information to achieve continuous, accurate and real-time head pose estimation. (ICRA2011)
- Embedding invisible patterns into regular video projection to make projector both a display device and a 3D sensor.
 - Robust coding scheme; accuracy decoding method through pre-trained primitive shape detector. (ISVC2012, IROS2012, WoRV2013*, IEEE TCSVT*)

Conclusion and Contribution

- A novel coarse-to-fine hand segmentation method in projector-camera system.
 - Combine contrast saliency and region discontinuity to segment the hand under projector's illumination. (ICRP2012, IEEE TPAMI*)
- A touch-sensitive display on arbitrary planar surface.
 - Just by use of mere a projector and a camera. (PROCAMS2012, IEEE TPAMI*)

Note: (*) indicates the papers are under review or prepared for submission.

Future Work

- Motion compensation for the displacement between successive images resulting in blur or destruction of the embedded codes in the difference image.
- Image enhancement approach to increase the low signal-to-noise ratio of subtraction image.
- Extension to multi-hand supporting and advanced touch gestures recognition in the touch-sensitive interface.

Related Publications

Conference paper

- [1] J. Dai and R. Chung, Head Pose Estimation by Imperceptible Structured Light Sensing, In *Proc. of IEEE International Conference on Robotics and Automation (ICRA'11)*, pages 1646-1651, May 2011.
- [2] J. Dai and R. Chung, Making Any Planar Surface into a Touch-sensitive Display by a Mere Projector and Camera, In *Proc. of 9th IEEE International Workshop on Projector-Camera Systems* (*PROCAMS2012*), June 2012.
- [3] J. Dai and R. Chung, On Making Projector both a Display Device and a 3D Sensor, In *Proc. of The 8th International Symposium on Visual Computing (ISVC'12)*, July 2012.
- [4] <u>J. Dai</u> and R. Chung, Embedding Imperceptible Codes into Video Projection and Applications in Robotics, To Appear in *Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'12)*, October 2012.
- [5] <u>J. Dai</u> and R. Chung, Combining Contrast Saliency and Region Discontinuity for Precise Hand Segmentation in Projector-Camera System, To Appear in *Proc. of The 21st International Conference on Pattern Recognition (ICPR'12)*, November 2012.
- [6] <u>J. Dai</u> and R. Chung, Sensitivity Evaluation of Embedded Code Detection in Imperceptible Structured Light Sensing, Submitted to IEEE Workshop on Robot Vision (WoRV'13), January 2013.

Journal paper

[7] J. Dai and R. Chung, Embedding Invisible Codes into Normal Video Projection: Principle, Evaluation and Applications. Submitted to IEEE Trans. on Circuit System and Video Technology (TCSVT).

[8] J. Dai and R. Chung, Touch-sensitive Display on Arbitrary Planar Surface by a mere Projector and Camera, Preparated to submit to IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI).

THANKS QA