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Abstract

The use of a projector in place of traditional display device would dissociate dis-

play size from device size, making portability much less an issue. Associated with

camera, the projector-camera system allows simultaneous video display and 3D

acquisition through imperceptible structured light sensing, providing a vivid and

immersed platform for natural human-computer interaction. Key issues involved

in the approach include: (1) Simultaneous Display and Acquisition: how to make

normal video projector not only a display device but also a 3D sensor even with

the prerequisite of incurring minimum disturbance to the original projection; (2)

3D Information Interpretation: how to interpret the spare depth information with

the assistance of some additional cues to enhance the system performance; (3)

Segmentation: how to acquire accurate segmentation in the presence of the inces-

sant variation of the projected video content; (4) Posture Recognition: how to infer

3D posture from single image. This thesis aims at providing improved solutions

to each of these issues.

To address the conflict between imperceptibility of the embedded codes and

the robustness of code retrieval, noise-tolerant schemes to both the coding and

decoding stages are introduced. At the coding end, specifically designed primitive

shapes and large Hamming distance are employed to enhance tolerance toward

noise. At the decoding end, pre-trained primitive shape detectors are used to detect

and identify the embedded codes – a task difficult to achieve by segmentation that
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is used in general structured light methods, for the weakly embedded information

is generally interfered by substantial noise.

On 3D information interpretation, a system that estimates 6-DOF head pose by

imperceptible structured light sensing is proposed. First, through elaborate pattern

projection strategy and camera-projector synchronization, pattern-illuminated im-

ages and the corresponding scene-texture image are captured with imperceptible

patterned illumination. Then, 3D positions of the key facial feature points are

derived by a combination of the 2D facial feature points in the scene-texture im-

age localized by AAM and the point cloud generated by structured light sensing.

Eventually, the head orientation and translation are estimated by SVD of a corre-

lation matrix that is generated from the 3D corresponding feature point pairs over

different frames.

On the segmentation issue, we describe a coarse-to-fine hand segmentation

method for projector-camera system. After rough segmentation by contrast salien-

cy detection and mean shift-based discontinuity-preserved smoothing, the refined

result is confirmed through confidence evaluation.

Finally, we address how an HCI (Human-Computer Interface) with small de-

vice size, large display, and touch input facility can be made possible by a mere

projector and camera. The realization is through the use of a properly embedded

structured light sensing scheme that enables a regular light-colored table surface

to serve the dual roles of both a projection screen and a touch-sensitive display

surface. A random binary pattern is employed to code structured light in pixel

accuracy, which is embedded into the regular projection display in a way that the

user perceives only regular display but not the structured pattern hidden in the dis-

play. With the projection display on the table surface being imaged by a camera,

the observed image data, plus the known projection content, can work together to

probe the 3D world immediately above the table surface, like deciding if there is a
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finger present and if the finger touches the table surface, and if so at what position

on the table surface the finger tip makes the contact. All the decisions hinge up-

on a careful calibration of the projector-camera-table surface system, intelligent

segmentation of the hand in the image data, and exploitation of the homography

mapping existing between the projector’s display panel and the camera’s image

plane.
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Chapter 1

Introduction

1.1 Motivation

The increasing capabilities and declining cost make video projectors widespread

and established presentation tools. Being able to generate images that are larger

than the actual display device virtually anywhere is an interesting feature for many

applications that cannot be provided by desktop screens. Many researchers dis-

covered this potential by applying projectors in unconventional ways to develop

new and innovative information displays that go beyond simple screen presenta-

tions.

The adoption of structured light illumination has been proven to be an effective

and accurate visual means for 3D reconstruction [147, 82]. The system consists

of a projector that projects controlled patterns to the target object, and a camera

capturing images of the illuminated object. Once correspondences between posi-

tions on the projector’s pattern panel and positions on the camera’s image plane

are established through the use of some elaborately designed coding strategies on

1



CHAPTER 1. INTRODUCTION 2

the illuminated patterns, simple triangulation over the light rays from the projec-

tor and the corresponding light rays to the camera would recover 3D information

about the target object. Recently, the availability of pico projectors with aver-

age dimensions of 4 × 2 × 1 inches has widely extended the application area of

structured light system.

On the other hand, HCI (Human-Computer Interface) has been traversing from

firstly punch card and LEDs, then paper tape and CRO display, more recently

mouse-plus-keyboard and LCD panel, and now fingers and touch-sensitive display

panel over the history of development. Technologies have been ever improving,

with the data-input mechanism growing only more natural, and the display only

more vivid. Indeed for the input-output interface of computers, scarcely anything

could be more natural than using our body to manipulate the computers (such as

head pose, facial expression, hands, body gesture etc.).

Motivated by the aforementioned facts, this thesis is mainly focus on using

projector-camera system in natural human-computer interaction. By endowing the

projector-camera system the capability of simultaneous video content display and

3D acquisition, the ProCams will provide a vivid, natural and accurate platform

for human-computer interaction.

1.2 Challenges

1.2.1 Simultaneous Display and Acquisition

In a variety of projector-camera systems we have often wished to operate cameras

and projectors simultaneously. Unfortunately, conflicting lighting requirements

have made such systems very difficult to realize: cameras need brightly light-

ed environments, whereas projectors need dark rooms. An additional difficulty
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for cameras, especially for those performing 3D acquisition, has been the lack of

strong features in many parts of the environment. Skin, clothes often image with

nearly uniform surface structure, making depth acquisition that relies on stereo

correspondence particularly difficult to perform. Using structured light to illumi-

nate the scene solves this problem, however it is highly distracting and therefore

not suitable for human-populated environments.

Some researchers designed structured light system in the non-visible spectrum

[48]. That way the media for regular projection and structure light sensing can be

made separate. However, additional hardware could be reduced and device size

could be diminished if structured light and regular projection can be achieved

through the same projector.

Therefore, how to make normal video projector not only a display device

but also a 3D sensing is one challenge for the use of projector-camera system

in human-computer interaction.

1.2.2 3D Information Interpretation

Through multiple projection-capture cycle using temporal coding scheme, the

projector-camera system has the capability to derive dense even pixel-wise point

cloud. Nevertheless, for the applications of human-computer interaction, due to

the fast movement of the human body, it is impossible to use time multiplexing

methods to acquire 3D information. Instead, the spatial multiplexing methods is

adopted, since one single image is necessary. But the disadvantage is that the s-

patial coding scheme could derive sparse and even inaccurate point cloud, which

will influence the performance of HCI system.

As a result, how to interpret the spare depth information with the assistance

of some additional information (such as 2D texture image, epipolar constraints,

smooth constraints, continuity constraints and homography constraints etc.) to
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enhance the system performance is an interesting problem.

1.2.3 Segmentation

The segmentation, as the first step for most natural human-computer interfaces ,

plays an important role in the robustness, accuracy and efficiency of a HCI sys-

tem. However, in the projector-camera scenario, it is a challenging task in the

presence of the incessant variation of the projected video content and the shadow

cast by the human body. Moreover, as the initial step of the HCI system, it is

not allowed allocate too much resource (computing time and computing power)

to segmentation task, especially in real-time applications and mobile applications.

Thus, how to segment the body part precisely and efficiently in complex fore-

ground and background is a question deserving to be considered.

1.2.4 Posture Recognition

In typical projector-camera system setup, only one camera has the sensing capa-

bility, so in a certain time instant, only one image could be captured. For most

touch based interface, the touch action detection is a principal task. Even for this

simple task, the challenge is, from a single image alone there is generally dif-

ficulty in even distinguishing whether there is a physical contact between finger

and table surface, let alone identifying where the touch takes place or what the

touch gesture is. The inevitable self-occlusion of the fingers will aggravate the

ambiguity. The facility of acquiring certain 3D information about the illuminated

workspace would be of much aid.

Hereby, how to make use of the 3D information to relax the ambiguity is

another challenge.
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1.3 Objective

The main objective of this thesis consists in developing a projector-camera system

that can provide a platform for the user interacting with computer in a natural way.

All the three key issues: 3D information interpretation, display and sensing, and

human action recognition. In details, the objectives can be generalized as follows:

1. Propose a novel approach of 6-DOF head pose estimation from impercep-

tible structured light sensing to evaluate the validity of projector-camera

system for human-computer interaction and to study the way of combining

2D texture information with 3D depth information.

2. Propose an approach of embedding codes into projection display for struc-

tured light based sensing, with the purpose of letting projector serve as both

a display device and a 3D sensor.

3. Propose a novel segmentation method specialize for the projector-camera

scenario to derive the accurate position of human body (e.g. hand and arm)

operating under the projector illumination.

4. Develop a system that transfer arbitrary planar surface to touch-sensitive

display by mere a projector and camera.

1.4 Organization of the Thesis

A comprehensive study of related previous work is addressed in Chapter 2. The

survey is conducted from two aspects: projector-camera system and natural human-

computer interaction. For projector-camera system, the most prevalent projection

technologies are introduced. And the recent researches on projector-camera sys-

tem (ProCams) are reviewed, including system calibration, traditional and embed-
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ded structured light sensing, and ProCams in interaction. For the natural human-

computer interaction, two channels, head pose and hand gesture are mainly re-

viewed.

In Chapter 3, we describe a method of estimating head pose estimation from

imperceptible structured light sensing. First, through elaborate pattern projection

strategy and camera-projector synchronization, pattern-illuminated images and

the corresponding scene-texture image are captured with imperceptible patterned

illumination. Then, 3D positions of the key facial feature points are derived by a

combination of the 2D facial feature points in the scene-texture image localized

by AAM and the point cloud generated by structured light sensing. Eventually, the

head orientation and translation are estimated by SVD of a correlation matrix that

is generated from the 3D corresponding feature point pairs over different frames.

Extensive experiments show that the proposed method is effective, accurate and

rapid in 6-DOF head pose estimation, making it suitable for real-time application.

In Chapter 4, we describe an approach of embedding codes into projection

display for structured light based sensing, with the purpose of letting projector

serve as both a display device and a 3D sensor. The challenge is to make the

codes imperceptible to human eyes so as not to disrupt the content of the orig-

inal projection. There is the temporal resolution limit of human vision that one

can exploit, by having a higher than necessary frame rate in the projection and

stealing some of frames for code projection. Yet there is still the conflict between

imperceptibility of the embedded codes and the robustness of code retrieval that

has to be addressed. We introduce noise-tolerant schemes to both the coding and

decoding stages. At the coding end, specifically designed primitive shapes and

large Hamming distance are employed to enhance tolerance toward noise. At the

decoding end, pre-trained primitive shape detectors are used to detect and identify

the embedded codes – a task difficult to achieve by segmentation that is used in
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general structured light methods, for the weakly embedded information is gener-

ally interfered by substantial noise. Extensive experiments including evaluations

of code imperceptibility, decoding accuracy and sensitivity analysis show that the

proposed system is effective, even with the prerequisite of incurring minimum

disturbance to the original projection.

One goal of projector-camera system is let human finger be used like a mouse

to click and drag objects in the projected content. It requires segmentation of

the human palm and fingers in the image data captured by the camera, which

is a challenging task in the presence of the incessant variation of the projected

video content and the shadow cast by the palm and fingers. In Chapter 5, we de-

scribe a coarse-to-fine hand segmentation method for projector-camera system.

After rough segmentation by contrast saliency detection and mean shift-based

discontinuity-preserved smoothing, the refined result is confirmed through con-

fidence evaluation. Extensive experimental results are shown to illustrate the ac-

curacy and efficiency of the approach.

In Chapter 6, we address how an HCI (Human-Computer Interface) with small

device size, large display, and touch input facility can be made possible by a mere

projector and camera. The realization is through the use of a properly embedded

structured light sensing scheme that enables a regular light-colored table surface

to serve the dual roles of both a projection screen and a touch-sensitive display

surface. A random binary pattern is employed to code structured light in pixel

accuracy, which is embedded into the regular projection display in a way that the

user perceives only regular display but not the structured pattern hidden in the dis-

play. With the projection display on the table surface being imaged by a camera,

the observed image data, plus the known projection content, can work together

to probe the 3D world immediately above the table surface, like deciding if there

is a finger present and if the finger touches the table surface, and if so at what
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position on the table surface the finger tip makes the contact. All the decision-

s hinge upon a careful calibration of the projector-camera-table surface system,

intelligent segmentation of the hand in the image data, and exploitation of the

homography mapping existing between the projector’s display panel and the cam-

era’s image plane. Extensive experimentation including evaluation of the display

quality, touch detection accuracy, trajectory tracking accuracy, multi-touch capa-

bility and system efficiency are shown to illustrate the feasibility of the proposed

realization.

Chapter 7 summarizes the contributions in this thesis and related publications.

How future work could extend on the results of this thesis is also discussed.



Chapter 2

Background

2.1 Projector-Camera System

Systems that utilize controllable lighting systems with light sensing devices facil-

itate a wide range of applications. Examples include 3D scanning, flexible display

walls, novel display interaction, reflectance field capture, optical communication,

and artistic creations. While the term ”projector-camera system” is used, such

systems encompass any approach that employs a controllable light-source, rang-

ing from LEDs to an array of light projectors, with any light sensing device, rang-

ing from a simple photo-sensor to an array of high-resolution wide-field-of-view

cameras. In the rest part of this section, a brief review on projection technologies

and some researches in ProCams is presented.

9
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2.1.1 Projection Technologies

Projectors share a common history with cameras. The first known record of what

might portray the idea of projecting an image on a surface is a drawing by Jo-

hannes de Fontana from 1420. The drawing was of a nun holding something that

might be a lantern. The lantern had a small translucent window that contained an

image of a devil holding a lance. These drawings are likely to have inspired the

creation of the earliest image projector, a device called a magic lantern [172]. In

the 1950s to the 1970s, the type of projector called slide projectors were common

as a form of entertainment; family members and friends would gather to view s-

lideshows. Late in the 20th century, slides and transparencies were replaced with

digital images.

A video projector is an image projector that receives a video signal and projects

the corresponding image on a projection screen using a lens system. All video

projectors use a very bright light to project the image. Video projectors are wide-

ly used for many applications such as, conference room presentations, classroom

training, home theatre and concerts. Since the video projector is one of the key

components of projector-camera system (ProCams), here I will summarize the

main technologies in recent video projectors.

LCD Projector

LCD (Liquid Crystal Display) projectors contain three separate LCD glass panels,

one for red, green, and blue components of the image signal being transfered to

the projector. As the light passes through the LCD panels, individual pixels can be

opened to allow light to pass or closed to block the light. This activity modulates

the light and produces the image that is projected onto the screen. The conceptual

diagram of the LCD technology is shown in Fig. 2.1.

The lamp provides white light that passes through a polarizing filter. Polariz-
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Figure 2.1: Conceptual diagram of the LCD technology.

ing works by accepting light that is traveling on the same plane. All other light

will be blocked. From the polarizing filter the light is then passed through a series

of dichroic mirrors. Dichroic mirrors work by only allowing certain colors in the

light spectrum to be reflected, while others pass through. The dichroic mirrors

in LCD projectors separate the light into the three primary colors: green, red and

blue. These three colors are then sent to a separate LCD panel. From there the

LCD panels send the light through the dichroic prism which recombines the light

and sends it out the main lens in the LCD projector to the surface against which it

is projected. Each LCD is only capable of controlling one color.

LCD panels in LCD projectors work by allowing the polarized light to travel

through a pane of glass into the liquid crystal inside the display. The liquid crystals

bend the light, and it is traveling on a different plane then when it entered through

the polarizing filter. If you apply an electrical current to the liquid crystal they
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will align, allowing the light to pass through on the same plane as when it entered.

If you add a second polarizing filter at the other end of the liquid crystal you

can then effectively block all light from passing through. Each LCD panel has

a separate system to control the electrical current that passes through the liquid

crystal, allowing each to be controlled individually.

DLP Projector

DLP (Digital Light Processing) is a proprietary technology developed by Texas

Instruments. It works quite differently than LCD. Instead of having glass panels

through which light is passed, the DLP chip is a reflective surface made up of

thousands (or millions) of micromirrors. Each mirror represents a single pixel.

The micromirror architecture is illustrated in Fig. 2.2.

Figure 2.2: Micromirror architecture.
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Before any of the mirrors switch to their on or off positions, the chip will

rapidly decode a bit-streamed image code that enters through the semiconductor.

It then converts the data from interlaced to progressive, allowing the picture to

fade in. Next, the chip sizes the picture to fit the screen and makes any necessary

adjustments to the picture, including brightness, sharpness and color quality. Fi-

nally, it relays all the information to the mirrors, completing the whole process in

just 16 microseconds.

The mirrors are mounted on tiny hinges that enable them to tilt either toward

the light source (ON) or away from it (OFF) up to ±12◦, and as often as 5, 000

times per second. When a mirror is switched on more than off, it creates a light

gray pixel. Conversely, if a mirror is off more than on, the pixel will be a dark gray.

The light they reflect is directed through a lens and onto the screen, creating an

image. The mirrors can reflect pixels in up to 1, 024 shades of gray to convert the

video or graphic signal entering the DLP into a highly detailed grayscale image.

DLPs also produce the deepest black levels of any projection technology using

mirrors always in the off position.

Figure 2.3: Conceptual diagram of the DLP technology.

As shown in Fig. 2.3, to add color to that image, the white light from the
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lamp passes through a transparent, spinning color wheel, and onto the DLP chip.

The color wheel, synchronized with the chip, filters the light into red, green and

blue. The on and off states of each mirror are coordinated with these three basic

building blocks of color. A single chip DLP projection system can create 16.7

million colors.

Each pixel of light on the screen is red, green or blue at any given moment.

The DLP technology relies on the viewer’s eyes to blend the pixels into the desired

colors of the image. For example, a mirror responsible for creating a purple pixel

will only reflect the red and blue light to the surface. The pixel itself is a rapidly,

alternating flash of the blue and red light. Our eyes will blend these flashes in

order to see the intended hue of the projected image.

Up to now, the LCD and DLP are the most mature technologies in consumer

market. Fig. 2.4 lists the comparison of the two technologies.

Figure 2.4: Pros and Cons of DLP and LCD.
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LCoS projector

Liquid crystal on silicon (LCoS or LCOS) is a ”micro-projection” or ”micro-

display” technology typically applied in projection. It is a reflective technology

similar to DLP projectors; however, it uses liquid crystals instead of individual

mirrors. By way of comparison, LCD projectors use transmissive LCD chips, al-

lowing light to pass through the liquid crystal. In LCoS, liquid crystals are applied

directly to the surface of a silicon chip coated with an aluminized layer, with some

type of passivation layer, which is highly reflective. The conceptual diagram of

LCoS is shown in Fig. 2.5.

Figure 2.5: Conceptual diagram of the LCoS technology.

LCoS technology can typically produce higher resolution and higher contrast

images than LCD technologies, which makes it less expensive to implement in

such devices as projection televisions.

LED projectors

LED projectors use one of the above mentioned technologies for image creation,

with a difference that they use an array of Light Emitting Diodes (LED) as the
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light source, negating the need for lamp replacement. By using LED, the heat

problem caused by traditional light source is resolved to a certain extend, and the

exemption of fans leads in miniaturization. Almost all the pico projectors employ

LED as light source.

Laser video projector

A laser video projector is a video projector that modulates a laser beam in order

to project a raster-based image. The systems work either by scanning the entire

picture a dot at a time and modulating the laser directly at high frequency, much

like the electron beams in a CRT, or by optically spreading and then modulating

the laser and scanning a line at a time, the line itself being modulated in much

the same way as with DLP. When well implemented this technology produces

the broadest color gamut available in practical display equipment today, because

lasers produce truly monochromatic primaries.

Due to the special features of laser projectors, such as a high depth of field, it is

possible to project images or data onto a screen at an arbitrary distance. Such laser

projection techniques are used in hand-held projectors, and for flight simulators

and other virtual reality applications.

2.1.2 Researches in ProCams

There continues to be growing interest in systems that combine projection tech-

nology with computer vision. Examples include automatically calibrated display

walls, interactive display surfaces, intelligent environments and performance art.

A characteristic of these systems is their ability to passively sense an environmen-

t in support of real-time control of projected light. Research in this area spans

a number of disciplines including computer vision, computer graphics, HCI and
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display technologies. In the rest of this section, several directions related to our

work in ProCams domain will be reviewed briefly.

ProCams Calibration

Projector-camera systems are adopted in many applications such as measurement

and spatial augmented reality. Calibration is a crucial step involving the determi-

nation of the intrinsic parameters of both the camera and the projector that con-

stitute the device and the extrinsic parameters between the two instruments. Most

current methods to geometrically calibrate projector-camera systems operate in

two phases: camera is calibrated firstly and then the projector [135, 92, 55].

To reduce the amount of work, methods have been proposed to integrate both

calibrations together. They either exploit structured light [100, 154] or color chan-

nels [101, 139], or both for one-shot structured light.

In [154], a calibration design that makes use of a liquid-crystal display (LCD)

panel as the calibration plane are presented. Whereas patterns displayed on it are

used for camera calibration, patterns projected onto and reflected by it when it is

set to total dark are used for projector calibration. The LCD panel’s planarity is of

industrial grade and is thus far more dependable; The pattern shown on the LCD

panel is programmable and is thus convenient to produce in high precision.

In [140], a user-friendly method to perform full geometric calibration of projector-

camera system is proposed. It is based on fiducial markers typically used for aug-

mented reality applications. Half of the markers are physically printed, and half

are projected using the projector. Each marker on its own carries information and

can easily be identified, this allows the machine to pre-warp markers that are pro-

jected, in a way that they do not interfere with printed markers. Moreover, markers

do not need color, and unlike structured light users can hold the calibration board

in their hands.
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Structured Light Sensing

The most straightforward application of projector-camera system is structured

light sensing. The adoption of structured light illumination has been proven an

effective and accurate visual means for 3D reconstruction. The system consists of

a projector that illuminates controlled pattern or patterns to the target object, and

a camera grabbing image or images of the illuminated object. Once correspon-

dences between positions on the projector’s pattern panel and positions on the

camera’s image plane are established, simple triangulation over light rays from

the projector and the corresponding light rays to the camera would recover 3D

information about the target object.

The coding methods in structured light were classified into two classes: tem-

poral and spatial codification. The temporal coding schemes generate the code-

words by projecting a sequence of patterns along time, so the pattern structure can

be very simple. Since multiple images are used, dense surface points can be recon-

structed by this means. Spatial codification represents the codeword in a unique

pattern. And its structure is often complex. Single or fewer pattern images are

usually used in spatial codification. That makes its output 3D model with lower

data density. In addition, there is also another hybrid class that combined the fea-

tures of temporal and spatial coding strategies. More detailed discussions about

structured light sensing technologies are summarized in the surveys [81, 82].

Embedded Structured Light

Temporal modulation of projected images is about integrating coded patterns into

the projection, in a way that the coded patterns are not noticeable to the users

under limitation of human vision. Synchronized cameras, however, are able to

detect and extract these codes. The principle was firstly described by Raskar et

al. [136], and has been enhanced by Cotting et al. [34]. It is referred to as
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embedded imperceptible pattern projection. Extracted code patterns, for instance,

allow simultaneous acquisition of scene depth and texture.

The first applicable imperceptible pattern projection technique was presented

in [34], in which DLP (digital light processing) projector was utilized. A core

component of DLP projector is a CMOS IC named DMD (Digital Micro-mirror

Device), whose top surface is composed of a dense array of tiny mirrors, each cor-

responding to a single pixel in the 2D image to be projected. Each of the mirrors

could be turned to one of two stable positions (on/off, or active/inactive). The pro-

jected intensity of a pixel is determined by the percentage of time that its mirror

is active rather than inactive. In [34], imperceptible structured light was achieved

by letting a specific time slot called BIEP (binary image exposure period), of the

DLP projection sequence, be occupied exclusively for displaying a binary pattern

within a single color channel (multiple color channels are used in [35] to differen-

tiate between multiple projection units). A camera that is synchronized exactly to

this projection sequence can capture the embedded binary codes. In the selected

BIEP the mirror flip sequences (each over a particular projection pixel) are not

necessarily evenly distributed over all possible intensities. Thus, the intensity of

each original projected pixel might have to be modified to ensure that the mir-

ror state is active (which encodes the desired binary value at the particular pixel).

This, however, can result in non-uniform intensity fragmentation and substantial

reduction of the tonal values. In practice, dithering techniques are used to diffuse

the artifacts.

Another scheme of integrating imperceptible code patterns is to modulate the

intensity of the projected image I spatially over the pattern domain. The result

is the code image Icod. In addition, a compensation image Icom is computed in

such a way that (Icod + Icom)/2 = I . If both images are projected alternate-

ly in a high enough speed, human observers will perceive I due to the slower
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temporal integration nature of the human visual system. This has been demon-

strated in [136]. The problem with this rather simple technique is that the code

could be visible during eye movements or code transitions, as the code image and

compensation image could be a little misaligned in the human visual perception

under such circumstances. In [56] properties of human perception, like adapta-

tion limitations to local contrast changes, are taken into account for adapting the

coding parameters depending on local characteristics, such as spatial frequencies

and local luminance values of image and code. This makes a truly imperceptible

temporal coding of binary information possible. For binary codes, I is regionally

decreased (Icod = I −∆ to encode a binary 0) or increased (Icod = I + ∆ to en-

code a binary 1) in intensity by the amount of ∆, while the compensation image

is computed with Icom = 2I − Icod. The code can then be recovered from the two

corresponding images (Ccod and Ccom) captured by the camera, by examining the

sign of Ccod − Ccom(< | = | >)0. Thereby, ∆ is one coding parameter that is

locally adapted.

In [127], another technique for adaptively embedding complementary pattern-

s into projected images is presented. In this work, the embedded code intensity

is regionally adapted depending on the spatial variation of neighboring pixels and

their color distribution in the YIQ color space. The final code contrast of ∆ is then

calculated depending on the estimated local spatial variations and color distribu-

tions. In [144], the binary temporal coding technique was extended to encoding

intensity values as well. For this, the code image is computed with Icod = I∆ and

the compensation image with Icom = 2(I −∆). The code can be extracted from

the camera images with ∆ = 2Ccod/(Ccod+Ccom). In general, temporal coding is

not limited to the projection of two images only. Multiple code and compensation

images can be projected if the display frame-rate is high enough, which requires

high speed projectors and cameras.
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ProCams based interaction

Figure 2.6: Projection-vision systems configurations: front projection with pro-
jector and camera mounted above (left), rear projection with projector and camera
in a cabinet (middle), camera and projector sit off to the side of the active surface
(right). [174]

There has been a great variety of interactive table and wall research prototype

systems. Here we limit discussion to projection-vision based touch screens.

One popular approach is to mount a camera and projector high on a shelf or on

the ceiling [171, 163, 21]. Such mounting configurations are typically necessary

because of the throw requirements of projectors and the typical focal length of

video cameras. Such a configuration has the following drawbacks:

• Ceiling installation of a heavy projector is difficult, dangerous, requires spe-

cial mounting hardware. and is best left to professionals.

• Once the installation is complete, the system and the projection surface can-

not be moved easily.
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• Often minor vibrations present in buildings can create problems during op-

eration and make it difficult to maintain calibration [171].

• The user’s own head and hands can occlude the projected image as they

interact with the system.

A second approach is to place the projector and camera behind a diffuse pro-

jection screen [112, 161]. While this enables the construction of a self-contained

device, allows the placement of codes on the bottom of the objects, and eliminates

occlusion problems, this approach also has drawbacks:

• It is difficult to construct such a table system with large display area which

also allows users room enough to put their legs under the table surface.

• Because the camera is looking through a diffuse surface, the imaging res-

olution is limited. High resolution capture of documents, for example, is

impossible.

• A dedicated surface is required, and the resulting housing for the projector

and camera can be quite large. This presents manufacturing and distribution

problem for a real product.

A third approach is to place camera and projector sitting off to the side of

the active surface [174]. This configuration requires short-throw projector and

geometrical distortion correction.

Three different projection-vision system configurations are illustrated diagram-

matically in Fig. 2.6.

Finally, there are a number of systems which embed sensing electronics into

the surface itself [38, 137]. These systems typically result in very fast and precise

detection of touch compared to vision based approaches, but lack much of the

flexibility in terms of other objects to be sensed. Others support only objects with



CHAPTER 2. BACKGROUND 23

special embedded hardware devices and do not detect touch [128]. These systems

usually rely on overhead projection.

Computer vision-based tables are capable of interesting sensing capabilities,

including detection and recognition of objects place on the surface. In this pa-

per we present novel techniques to enable a variety of sensing capabilities and

interactions, many of these capabilities have been studied in previous work.

Robust finger tracking has been studied in the context of table systems [94,

98], but generally ’clicking’ or ’pen down’ is implemented by dwelling or other

gesture recognition. True detection of touch can be detected roughly with two

cameras [33, 108, 173]. In [174], the analysis of shadows is we explored to detect

touch and infer hover height. A related formulation uses shadows to infer the

height of objects above a surface but is unsuited to the case where the object is

touching the surface and so occludes its own shadow, while another approach

using observing shadows using an illuminant coaxial with the camera is unable to

infer precise depth or hover information.

After the release of PrimeSense’s [6] depth-sensing camera-based Microsoft

Kinect [4], depth-sensing cameras have been used in various interactive surface

applications. LightSpace [176] used an array of depth-sensing cameras to track

users’s manipulations on multiple surfaces. In [175], the touch event was deter-

mined by using a per-pixel depth threshold derived from a histogram of the static

scene. Omnitouch [63] detected surface touch by counting the pixel number in a

flood filling operation in depth map.

Besides the planar surface, some curved surfaces are projected for interaction

purpose. Sphere [20] is a multi-user, multi-touch-sensitive spherical display in

which an infrared camera used for touch sensing shares the same optical path

with the projector used for the display. Instrumented with a single depth camera,

a stereoscopic projector, and a curved screen, MirageTable [19] is an interactive
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system designed to merge real and virtual worlds into a single spatially registered

experience on top of a table. LightGuide [151] is a system that explores a new

approach to gesture guidance where we project guidance hints directly on a user’s

body.

2.2 Natural Human-Computer Interaction

Human-Computer Interaction (HCI) involves the study, planning, and design of

the interaction between people (users) and computers. It is often regarded as the

intersection of computer science, behavioral sciences, design and several other

fields of study. Interaction between users and computers occurs at the user inter-

face (or simply interface), which includes both software and hardware; for exam-

ple, characters or objects displayed by software on a personal computer’s mon-

itor, input received from users via hardware peripherals such as keyboards and

mouses, and other user interactions with large-scale computerized systems such

as aircraft and power plants. The Association for Computing Machinery (ACM)

defines human-computer interaction [65] as ”a discipline concerned with the de-

sign, evaluation and implementation of interactive computing systems for human

use and with the study of major phenomena surrounding them.”

Compared with traditional Human-Computer Interaction, the natural Human-

Computer Interaction is (1) effectively invisible, or becomes invisible with suc-

cessive learned interactions, to its users, and (2) is based on nature or natural el-

ements. The word natural is used because most computer interfaces use artificial

control devices whose operation has to be learned. A natural HCI relies on a user

being able to quickly transition from novice to expert. Thus, ”natural” refers to a

goal in the user experience - that the interaction comes naturally, while interacting

with the technology, and that the interface itself is natural.
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If the users could interact with the computer through the approaches that used

to communicate with other people, such as speech, body motion, head pose, facial

expression, hand gesture etc., it will be the most natural way for users to ma-

nipulate the computers. On the side of computer, the computer should have the

capability to comprehend what the user says, to recognise what the gesture the us-

er is showing, to estimate what the use’s head pose is, to understand the changes

of user’s facial expression, and to interpret the meaning of user’s hand gesture

indicates.

For all the natural channels mentioned above, many researches in the literature

address each topic extensively. Here we mainly provide a literature review on

head pose estimation and hand gesture recognition to show the relation between

our research and the state of the art.

2.2.1 Head Pose

The capacity to estimate the head pose of another person is a common human a-

bility that presents a unique challenge for computer vision systems. In a computer

vision context [118], head pose estimation is the process of inferring the orien-

tation of a human head from digital imagery. It requires a series of processing

steps to transform a pixel-based representation of a head into a high-level concept

of direction. Like other facial vision processing steps, an ideal head pose esti-

mator must demonstrate invariance to a variety of image-changing factors. These

factors include physical phenomena like camera distortion, projective geometry,

multi-source non-Lambertian lighting, as well as biological appearance, facial ex-

pression, and the presence of accessories like glasses and hats.

Head pose estimation is most commonly interpreted as the ability to infer the

orientation of a person’s head relative to the view of a camera. It is often as-

sumed that the human head can be modeled as a disembodied rigid object. Under
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this assumption, the human head is limited to three DOF in pose, which can be

characterized by pitch, roll, and yaw angles as pictured in Fig. 2.7.

Figure 2.7: The three degrees of freedom of a human head can be described by
the egocentric rotation angles pitch, roll, and yaw [118].

In literature, the head pose estimation methods can be divided into the fol-

lowing seven categories based on the fundamental approach that underlies the

implementation:

Appearance Template Matching

Appearance template matching methods employ image-based comparison metrics

to match a view of a person’s head to a set of exemplars(each labeled with a

discrete pose). And the queried image is given the same pose that is assigned

to the most similar of these templates. D. Beymer [22] made use of normalized

cross-correlation at multiple image resolutions as similarity measurement, while

S. Niyogi and W. Freeman [122] applied mean squared error(MSE) over a sliding
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window.

Compared with more complicated methods, appearance templates have some

advantages. Firstly, the templates can be extended to a larger set at any time,

allowing system to adapt to changing conditions. Moveover, appearance templates

do not require negative training examples or facial feature points. Appearance

templates are also well suited for both high and low-resolution imagery. However,

there are many disadvantages with appearance templates. Without using some

interpolation methods, they are only capable to estimate discrete pose orientations.

Localization error can degrade the accuracy of the head pose estimation, since

they assume that the head region has already been detected. As more templates

are added into exemplar set, more computationally expensive image comparisons

will need to be compute. Despite those limitations, the most significant problem

with appearance templates is that they operate under the faulty assumption that

pairwise similarity in the image space can be equated to similarity in pose.

Detector Array

Frontal face detection has been a hot topic in computer vision during last decade,

and many approach [42, 60, 167] have been introduced. Given the success of these

approaches, it seems like a natural extension to estimate head pose by training

multiple face detectors, each to specific a different discrete pose. Detector array

are similar to appearance templates in that they operate directly on an image patch.

Instead of comparing an image to a large set of individual templates, the image is

evaluated by a detector trained through many images with a supervised learning

algorithm.

Huang et al. [75] used three SVMs to compose detector array for estimate

three discrete yaws. Zhang et al. [185] trained five FloatBoost classifiers for head

pose estimation in a far-field multi-camera setting.
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Since each detector is capable of making the distinction between head and

non-head, so an advantage of detector array methods is that a separate head de-

tection and localization step is not required. Another improvement is that unlike

appearance templates, detector arrays can ignore the appearance variation that

does not correspond to pose change through training algorithm. Like appearance

templates, detector arrays are also suitable for high and low-resolution images.

Disadvantages to detector arrays also exit. It is burdensome to train many de-

tectors for each discrete pose, since besides many positive face examples, many

negative non-face examples are also necessary for detector training, which require

substantially more training data. Another disadvantage is the degree of freedom,

in practice, the detector arrays approaches have been limited to one DOF and few-

er than 12 detectors. Furthermore, since the majority of the detectors have binary

outputs, there is no way to derive a reliable continuous estimate from the result, al-

lowing only coarse head pose estimates. Finally, the computational requirements

increase linearly with the number of detectors, making it difficult to implement a

real-time system with large array.

Geometric Methods

Geometric approaches to head pose estimation use head shape and the precise

configuration of local features to estimate pose, since these factors, such as the

location of the face in relation to the contour of the head, strongly influence the

human perception of head pose, suggesting that these are extremely salient cues

regarding the orientation of the head.

Early approaches focused on estimating the head from a set of facial feature

locations. It is assumed that these features are already known, and that pose can

be estimated directly from the configuration of these points. The configuration of

facial features can be exploited in many ways to estimate pose. A. Gee and R.
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Cipolla [8] employed five facial points (the outside corners of each eye, the out

corners of the mouth, and the tip of the nose), the facial symmetry axis is found

by connecting a line between the midpoint of the eyes and the midpoint of mouth.

Assuming a fixed ratio between these facial points and a fixed length of the nose,

the facial direction can be determined under weak-perspective geometry from the

3D angle of the nose. T. Horprasert et al. [160] used a different set of five points

(the inner and outer corners of each eye, and the tip of the nose) to estimate pose.

Under the assumption that all four eye points are assumed to be coplanar, yaw can

be determined from the observable difference in size between the left and right eye

due to projective distortion from the known camera parameters. Roll can be found

simply from the angle of this line from horizon. Pitch is determined by comparing

the distance between the nose tip and the eye-line to an standard model. Wang and

Sung [74] recently proposed another geometric method using the inner and outer

corners of each eye and the corners of the mouth.

The most significant advantages of the geometric methods are fast and simple.

With only a few facial features, a decent estimate of head pose can be derived.

However, the obvious difficulty lies in detecting the features with high precision

and accuracy, but the more subtle challenges stem from handling outlying or miss-

ing feature detections. Considering that geometric approaches depend on the ac-

curate detection of facial points, they are typically more sensitive to occlusion

than appearance-based methods that use information from the entire facial region.

Flexible Models

In flexible models approaches, a nonrigid model is fit to the image such that it

conforms to the facial structure of each individual. In addition to pose labels,

these methods require training data with annotated facial features, but it enables

them to make comparisons at feature level rather than at the global appearance
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level.

One of the flexible models for head pose estimation is Elastic Bunch Graph

(EBG). To train this system, facial feature locations are manually labeled in each

training image, and local feature descriptors such as Gabor jets can be extracted at

each location, representing nonrigid, or deformable, objects. The technique called

Elastic Graph Matching (EGM) is employed to compare a bunch graph to a new

face image, the graph is placed over the image, and exhaustively or iteratively

deformed to find the minimum distance between the features a every graph node

location. In [87], a different bunch graph is created for every discrete pose, and

each of these is compared to a new view of the head. The bunch graph with the

maximum similarity assigns a discrete pose to the head.

Since EGM uses features located at specific facial points, there is significantly

less inter-subject variability than with unaligned points, which makes it much

more likely that similarity between the models will equate to similarity in pose.

A disadvantage to this method is that pose estimate is discrete, requiring many

bunch graphs to gain fine head pose estimates. Unfortunately, comparing many

bunch graphs, each with many deformations, is computational expensive.

Another flexible models that have evolved for head pose estimation are the

Active Shape Model (ASM) [156] and Active Appearance Model (AAM) [157],

which learn the primary modes of variation in facial shape and texture from a 2D

perspective. Given a rough initialization of face shape, the AAM can be fitted

to a new facial image by iteratively comparing the rendered appearance model to

the observed image and adjusting the model parameters to minimize a distance

measure between these two images. Once the model has converged to the feature

localizations, an estimate of head pose can be obtained by mapping the appearance

parameters to a pose estimate. Cootes et al. [158] employed linear regression for

yaw estimation by AAM. Baker et al. [141] proposed modified AAMs that expand
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their utility to driver head pose estimation.

AAMs have good invariance to head localization error, since they adapt to

the image and find the exact location of the facial features, allowing precise and

accurate head pose estimation. The main limitation of AAMs is that all of the

facial features are required to be located in each image frame. In practice, these

approaches are limited to head pose orientations from which the outer corners of

both eyes are visible. It is also not evident that AAM fitting algorithms could

successfully operate for far-field head pose estimation with low-resolution facial

images.

Nonlinear Regression Methods

Nonlinear regression methods estimate pose by learning a nonlinear functional

mapping from the image space to one or more pose directions. The allure of these

approaches is that with a set of labeled training data, a model can be built that will

provide a discrete or continuous pose estimate for any new data sample.

Of the nonlinear regression tools used for head pose estimation, neural net-

works have been the most widely used in the literature [23, 187].

A locally linear map (LLM) is another popular neural network consisting of

many linear maps [134]. To build the network, the input data is compared to

a centroid sample for each map and used to learn a weight matrix. Head pose

estimation requires a nearest-neighbor search for the closest centroid, followed by

linear regression with the corresponding map. This approach can be extended with

difference vectors and dimensionality reduction [71] as well as decomposition

with Gabor wavelets [96].

The advantage of neural network approaches are numerous. These systems are

very fast, only require cropped labeled faces for training, work well in near field

and far-field imagery, and give some of the most accurate head pose estimation in
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practice. The main disadvantage to these methods is that they are to prone to error

from poor head localization.

Tracking Methods

Tracking methods operate by following the relative movement of the head be-

tween consecutive frames of a video sequence. Temporal continuity and smooth

motion constraints are utilized to provide a visually appealing estimate of pose

over time. These systems typically demonstrate a high level of accuracy, but ini-

tialization from a known head position is requisite. Typically, the subject must

maintain a frontal pose before the system has begun, and must be re-initialized

whenever the track is lost. As a result, approaches often rely on manual initializa-

tion or a camera view such that the subject’s neutral head pose is forward-looking

and easily re-initialized with a frontal face detector.

Tracking methods can operate in a bottom-up manner, following low-level

facial landmarks from frame to frame [53, 183, 114, 124, 186]. Tracking can

alternatively employ a model-based approach by finding the transformation of a

model that best accounts for the observed movement of the head [107, 178].

The primary advantage of tracking approaches is their ability to track the head

with high accuracy by discovering the small pose shifts between video frames.

In this tracking configuration, these methods consistently outperform other head

pose estimation approaches. An additional advantage with model-based tracking

is the ability to dynamically construct an individualized archetype of a person’s

head. This allows these approaches to avoid the detrimental effects of appearance

variation.

The difficulty with tracking methods is the requisite of an accurate initializa-

tion of position and pose to generate a new model or adapt an existing model.

Without a separate localization and head pose estimation step, these approaches
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can only be used to discover the relative transformation between frames. In this

mode of operation, these methods are not estimating head pose in the absolute

sense, but rather tracking the movement of the head.

Hybrid Methods

Hybrid approaches combine one or more of the aforementioned methods to es-

timate pose. These systems can be designed to overcome the limitations of any

one specific head pose category. A common embodiment is to supplement a static

head pose estimation approach with a tracking system. This method yields the

high accuracy of pure tracking approaches without initialization and drift limita-

tions. Many successful combinations have been presented by mixing an automat-

ic geometric method with point tracking [89, 68, 121], PCA embedded template

matching with a continuous density hidden Markov model [69], PCA embedded

template keyframe matching with stereo tracking by grayscale and depth constan-

cy [116], and color and texture appearance templates with image-based particle

filtering [18].

Hybrid systems can also use two or more independent techniques and fuse the

estimates from each system into a single result. In this case, the system gain-

s information from multiple cues that together increase the estimation accuracy

[177].

2.2.2 Hand Gesture

Most of the complete hand interactive systems can be considered to be composed

by three layers [179]: detection (or segmentation), tracking and recognition. The

detection layer is responsible for defining and extracting visual features that can

be attributed to the presence of hands in the field of view of the camera(s). The
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tracking layer is responsible for performing temporal data association between

successive image frames. Moreover, in model-based methods, tracking also pro-

vides a way to maintain estimates of model parameters, variables and features that

are not directly observable at a certain moment in time. Last, the recognition layer

is responsible for grouping the spatiotemporal data extracted in the previous layers

and assigning the resulting groups with labels associated to particular classes of

gestures. In this subsection, related works in literature on these three subproblems

are reviewed.

Detection and Segmentation

The primary step in gesture recognition systems is the detection of hands and the

segmentation of the corresponding image regions. This segmentation is crucial

because it isolates the task-relevant data from the image background, before pass-

ing them to the subsequent tracking and recognition stages. A large number of

methods have been proposed in the literature that utilize a several types of visu-

al features and, in many cases, their combination. Such features are skin color,

shape, motion and anatomical models of hands. In [102], a comparative study on

the performance of some hand segmentation techniques can be found.

• Color

Several color spaces have been proposed for hand detection including RGB,

normalized RGB, HSV [149], YCrCb [27], YUV [14], etc. Several methods

[91, 14, 150] utilize pre-computed color distributions extracted from statis-

tical analysis of large datasets. Parametric models of the color distribution

have also been used in the form of a single Gaussian distribution [72] or a

mixture of Gaussians [143]. Generally, color segmentation can be confused

by background objects that have a color distribution similar to human skin.

A way to cope with this problem is based on background subtraction [52].
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Moreover, skin color is only one of many cues to be used for to hand de-

tection. For example, in cases where the faces also appear in the camera

field of view, further processing is required to distinguish hands from faces

[188]. Thus, skin color has been utilized in combination with other cues to

obtain better performance.

• Shape

The characteristic shape of hands has been utilized to detect them in images

in multiple ways. Much information can be obtained by just extracting the

contours of objects in the image. In the 2D/3D drawing systems of [164],

the user’s hand is directly extracted as a contour by assuming a uniform

background and performing real-time edge detection in this image. Local

topological descriptors have been used to match a model with the edges in

the image [142, 51, 83]. Certain methods focus on the specific morpholo-

gy of hands and attempt to detect them based on characteristic hand shape

features such as fingertips [14, 80].

• Trained detectors

Significant work has been carried out on finding hands in grey level images

based on their appearance and texture. Several methods [181, 85, 84] at-

tempt to detect hands based on hand appearances, by training classifiers on

a set of image samples. More recently, methods based on a machine learn-

ing approach called boosting have demonstrated very robust results in face

and hand detection [167, 41].

• Model-based detection

A category of approaches utilize 3D hand models for the detection of hands

in images. One of the advantages of these methods is that they can achieve

view-independent detection. Different models have been proposed, such as



CHAPTER 2. BACKGROUND 36

point and line feature model [80, 182], edge feature model [79] and rigid

joints model [77]. The more complicated 3D models should have enough

degrees of freedom to adapt to the dimensions of the hand(s) present in an

image [17, 97, 52].

• Motion

Motion is a cue utilized by a few approaches to hand detection. The reason

is that motion-based hand detection demands for a very controlled setup,

since it assumes that the only motion in the image is due to hand movement

[78, 130].

Tracking

Tracking, or the frame-to-frame correspondence of the segmented hand regions

or features, is the second step in the process towards understanding the observed

hand movements. The importance of robust tracking is twofold. First, it provides

the inter-frame linking of hand/finger appearances, giving rise to trajectories of

features in time. These trajectories convey essential information regarding the

gesture and might be used either in a raw form (e.g. in certain control applications

like virtual drawing the tracked hand trajectory directly guides the drawing oper-

ation) or after further analysis (e.g. recognition of a certain type of hand gesture).

Second, in model-based methods, tracking also provides a way to maintain esti-

mates of model parameters variables and features that are not directly observable

at a certain moment in time.

• Template based tracking

This class of methods exhibits great similarity to methods for hand detec-

tion. Members of this class invoke the hand detector at the spatial vicinity

that the hand was detected in the previous frame, so as to drastically restrict
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the image search space. The implicit assumption for this method to succeed

is that images are acquired frequently enough [159, 50, 78, 156].

• Tracking based on the Mean Shift

The Mean Shift algorithm [180] is an iterative procedure that detects lo-

cal maxima of a density function by shifting a kernel towards the average

of data points in its neighborhood. The algorithm is significantly faster

than exhaustive search, but requires appropriate initialization. The work in

[36, 37, 57] is not restricted to hand tracking, but can be used to track any

moving object. Mean-Shift tracking is robust and versatile for a modest

computational cost. It is well suited for tracking tasks where the spatial

structure of the tracked objects exhibits such a great variability that trackers

based on a space-dependent appearance reference would break down very

fast. On the other hand, highly cluttered background and occlusions may

distract the mean-shift trackers from the object of interest.

• Particle filtering

Particle filters have been utilized to track the position of hands and the con-

figuration of fingers in dense visual clutter [104, 76, 77]. In this approach,

the belief of the system regarding the location of a hand is modeled with

a set of particles. The approach exhibits advantages over Kalman filtering,

because it is not limited by the unimodal nature of Gaussian densities that

cannot represent simultaneous alternative hypotheses. A disadvantage of

particle filters is that for complex models (such as the human hand) many

particles are required, a fact which makes the problem intractable especially

for high-dimensional models.
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Recognition

The overall goal of hand gesture recognition is the interpretation of the semantics

that the hand(s) location, posture, or gesture conveys. Basically, there have been

two types of interaction in which hands are employed in the user’s communication

with a computer. The first is control applications such as drawing, where the

user sketches a curve while the computer renders this curve on a 2D. Methods

that relate to hand-driven control focus on the detection and tracking of some

feature (e.g. the fingertip, the centroid of the hand in the image etc) and can be

handled with the information extracted through the tracking of these features. The

second type of interaction involves the recognition of hand postures, or signs, and

gestures.

• Template matching

Template matching, a fundamental pattern recognition technique, has been

utilized in the context of both posture and gesture recognition. For the

recognition of hand postures, the image of a detected hand forms the candi-

date image which is directly compared with prototype images of hand pos-

tures [7, 49, 103]. The best matching prototype (if any) is considered as the

matching posture. Clearly, because of the pixel-by-pixel image comparison,

template matching is not invariant to scaling and rotation.

• Contour and silhouette matching

This class of methods [17, 17, 165] mainly refers to posture recognition and

is conceptually related to template matching in that it compares prototype

images with the hand image that was acquired to obtain a match. The de-

fined feature space is the edges of the above images. The use of silhouettes

[16] in gesture recognition has not been extensive, probably because dif-

ferent hand poses can give rise to the same or similar silhouette. Another



CHAPTER 2. BACKGROUND 39

reason is that silhouette matching requires alignment (or else, point-to-point

correspondence establishment across the total arc length), which is not al-

ways a trivial task. Also, matching of silhouettes using their conventional

arc length descriptions (or ”signatures”) is very sensitive to deformations

and noise.

• Model-based recognition methods

Most of the model-based gesture recognition approaches [181, 11, 133, 73]

employ successive approximation methods for the estimation of their pa-

rameters. Since gesture recognition is required to be invariant of relative

rotation, intrinsic parameters such as joint angles are widely utilized. The

strategy of most methods in this category is to estimate the model parame-

ters, e.g. by inference or optimization, so that the extracted features match

a model.

• HMMs

HMM is a rich tool used for hand gesture recognition in diverse application

domains. Probably, the first publication addressing the problem of hand

gesture recognition is the celebrated paper by Yamato et al. [88]. In this

approach, a discrete HMM and a sequence of vector-quantized (VQ)-labels

have been used to recognize six classes of tennis strokes. Before applying

the HMM, the image sequence goes through several preprocessing steps

such as low-pass filtering to reduce the noise, background subtraction to ex-

tract the moving objects, and binarization of the moving objects in order to

generate blobs. The blobs roughly represent the poses of the human. The

features are the amounts of object (black) pixels. These features are vector

quantized, such that the image sequence becomes a sequence of VQ-labels,

which are then processed by a discrete HMM. Subsequently, several other

applications of hand gesture recognition have been developed based on H-
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MMs, such as sign language recognition [86, 129], graphic editor control

[58], and robot control [10].



Chapter 3

Head Pose Estimation by

Imperceptible Structured Light

Sensing

In this chapter, we describe a method of estimating head pose estimation from

imperceptible structured light sensing. First, through elaborate pattern projection

strategy and camera-projector synchronization, pattern-illuminated images and

the corresponding scene-texture image are captured with imperceptible patterned

illumination. Then, 3D positions of the key facial feature points are derived by a

combination of the 2D facial feature points in the scene-texture image localized

by AAM and the point cloud generated by structured light sensing. Eventually, the

head orientation and translation are estimated by SVD of a correlation matrix that

is generated from the 3D corresponding feature point pairs over different frames.

Extensive experiments show that the proposed method is effective, accurate and

41
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rapid in 6-DOF head pose estimation, making it suitable for real-time application.

3.1 Introduction

Head pose estimation has always been an active topic in computer vision for its

usefulness in a variety of applications. In human-computer interaction, head pose

is an important cue for computer or robot to infer the intention of human [111].

For some face-related applications such as face alignment, face recognition, and

facial expression recognition, estimating the pose of the face is considered as a

precondition or preprocessing step [24]. Moreover, for driver-assistance systems,

head pose estimation is essential for inferring the driver’s focus of attention [119].

In the context of computer vision, head pose estimation is most commonly

interpreted as the ability to infer the orientation and translation of a person’s head

with respect to the view of a camera. And the human head is assumed to be

modeled as a disembodied rigid object, thus the human head motion is limited to

six degrees of freedom (DOF), three for orientation characterized by pitch, roll,

and yaw, and three for translation along three directions.

The adoption of structured light illumination has been proven to be an effec-

tive and accurate visual means for 3D reconstruction [147]. The system consists

of a projector that projects controlled patterns to the target object, and a camera

capturing images of the illuminated object. Once correspondences between posi-

tions on the projector’s pattern panel and positions on the camera’s image plane

are established through the use of some elaborately designed coding strategies on

the illuminated patterns, simple triangulation over the light rays from the projec-

tor and the corresponding light rays to the camera would recover 3D information

about the target object. Recently, the availability of pico projectors with aver-

age dimensions of 4 × 2 × 1 inches has widely extended the application area of
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structured light system. Nikon Corp. has even integrated an ultra-small built-in

projector into its latest digital camera COOLPIX S1000pj, making it possible to

implement structured light system in hand-held consumer electronic products.

However, light projection’s intrinsic characteristics could lead to disadvan-

tages in specific circumstances: it could yield to loss or corruption of colorimet-

rical and textual information of the lighted surfaces, to the inconsistence of the

optical flow, and moreover, to the offensive, indeed dangerous aspects of the illu-

mination (think about the potential danger of LASER source; even video projec-

tion to human face for face measurement etc. could arouse discomfort).

In order to benefit from the merits of structured light vision while avoiding the

drawbacks, some researchers designed structured light system in the non-visible

spectrum [48]. Three major approaches are InfraRed Structured Light (IRSL),

Filtered Structured Light (FSL), and Imperceptible Structured Light (ISL). ISL is

easy to implement, since it requires similar equipments as those of regular pro-

jection: a digital projector, and cameras. The light source projects a light pattern

followed by its complement (inverse pattern) onto the scene at high frequency, so

that the resulting pattern is perceived by humans as uniform. The first camera is

synchronized with the projection of the first pattern to get 3D information of the

scene, just like in the traditional structured light methods; the second one has long

integration time and observes the scene under uniform light to capture a gray-level

or colored image representing scene texture.

This chapter describes a method of determining the 6-DOF head pose by the

use of an imperceptible structured light system. The method is able to track accu-

rate 3D positions of salient facial landmarks without the need of going through any

training process. Firstly, through elaborate pattern projection strategy and camera-

projector synchronization, a pattern-illuminated image and the corresponding scene-

texture image are captured under illumination that appears as white light yet em-
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beds coded patterns. Then, in the point cloud generated by structured light sens-

ing, the facial feature points in the scene-texture image localized by AAM will

have their 3D positions interpolated. Correspondences between such facial fea-

tures in 3D, with those associated with the previous or reference image frame, can

then be constructed. Finally, the head orientation and translation are estimated by

SVD of a correlation matrix that is generated from such point pairs in 3D.

The remainder of this chapter is structured as follows: In Section 3.2, relat-

ed works on head pose estimation and imperceptible structured light sensing are

briefly reviewed. The essential processes of the proposed method including pat-

tern projection strategy, facial landmark localization, and 6-DOF head pose esti-

mation are described in Section 3.3. In Section 3.4, system setup and experimental

results are shown. Conclusion and possible future work are offered in Section 3.5.

3.2 Previous Works

Head pose estimation has been extensively researched and increasingly used in

human-computer interface and driver safety assistant system. Imperceptible struc-

tured light system (ILS) is an effective and low cost means of measuring 3D in-

formation, that is without disrupting, modifying, or putting in danger the environ-

ment. Below we offer a brief review of some of the key works related to head

pose estimation and ILS.

3.2.1 Head Pose Estimation

Since there are many potential applications of head pose estimation, a variety of

approaches to the problem have been proposed in the past decade. A compre-

hensive literature review has been recently carried out by Murphy-Chutorian and
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Trivedi [118]. Below we outline some key works related to our work.

Since the head pose or motion is in 3D domain, inherently using 3D informa-

tion and 3D face models are more direct and accurate for pose estimation, than

using 2D texture information (such as points, edges etc.) in images. Morency et

al. use depth and intensity view-based eigenspaces to build a prior model from the

first frame that is then robustly tracked [116]. Jimenez et el. build a 3D face mod-

el using some points chosen by SMAT in the first frame [90]. Through the stereo

correspondence of the two cameras, the 3D coordinates of these points are extract-

ed, and the points are tracked in the following frames and 3D pose are calculated

at each frame by RANSAC and POSIT.

Some methods have been presented that work on range-scan data. Based on a

novel shape signature to identify noses in range images, Breitenstein et al. gen-

erate candidates for the nose positions, and then generate and evaluate many pose

hypotheses [26]. The pose is estimated using an error function that is employed to

compare the input range image with the pre-computed pose image of an average

face model.

In the above methods, though 3D acquisition systems are there to provide

accurate and dense data, the vast amount of data also demands the use of powerful

parallel processors (GPU), or else there could be difficulty in processing the data

in real time.

Besides, hybrid methods that combine one or more methods have shown good

performance in pose estimation. Murphy-Chutorian et al. present a system based

on localized gradient orientation histograms, that are integrated with support vec-

tor machines for regression [119]. However, some training processes on some

previously prepared training sets are needed for the learning based method, which

are generally tedious and time consuming.

In contrast, our approach derives the 3D positions of key facial feature points
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in a sparse point cloud generated from ISL system, requiring no training process.

The low computational complexity also ensures real-time performance.

3.2.2 Imperceptible Structured Light

A first proof of concept for embedding invisible structured light patterns into DLP

projections was introduced in the ”Office of the Future” project [136]. In this

work, binary codes are embedded by projecting temporally alternating code im-

ages and their complements. Provided that the frequency of projection reaches the

flicker fusion threshold (≥ 75Hz), the pattern and the inverse pattern are visually

integrated over time in human perception, and the illumination has the appearance

of a flat field (”white” light”) to humans. However, the concept of embedding

structured light into DLP projections was achieved with significant modification

effort on the projection hardware and firmware, including removal of the color

wheel and reprogramming of the controller. The resulting images were also in

greyscale only. The implementation of such a setting was impossible without

mastering and full access to the projection hardware.

Cotting et. al. introduced a coding scheme [34] that synchronizes a camera to a

specific time slot of a DLP micro-mirror flipping sequence in which imperceptible

binary patterns are embedded. However, not all mirror states are available for

all possible intensities, and the additional hardware, DVI repeater with tapped

vertical sync signal, is not an off-the-shelf instrument.

However, with the development of digital projection technology, some so-

called 3D compatible DLP projectors with fresh rate of 120Hz or higher emerged

recently. This makes it possible to implement imperceptible structured light with-

out any hardware modification or extra assisting hardware.
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3.3 Method

Our ILS has a capability to capture the pattern-illuminated image and scene-

texture image simultaneously by specially designed pattern projection strategy.

Below, we first outline the design of the pattern projection strategy for impercep-

tible structured light (ISL) sensing. Then, the method for deriving 3D positions

of the facial landmarks will be described. Finally, the method of head pose esti-

mation that makes use of the corresponding point sets derived for different image

frames will be given.

3.3.1 Pattern Projection Strategy for Imperceptible Structured

Light Sensing

The vital aspect of imperceptible structured light sensing is the synchronization

between camera’s image capture and projector’s illumination projection. Here we

take one capture-projection cycle as an example to explain the strategy of pattern

projection, which is illustrated in Fig. 3.1. In order to achieve imperceptible

structured light projection, the frequency of projection must exceed the flicker

fusion threshold, which is 75Hz for most of the people. First of all, we ensure that

the projector projects an image every 10ms, i.e., at 100Hz. As shown in Fig. 3.1,

along the time axis, the colored pattern illumination, the inverse colored pattern

illumination, and entirely white illumination are projected at the time instants

0ms, 10ms, 20ms respectively. The former two images are projected for ISL

sensing, while the latter one is projected for capturing the scene-texture image at

almost the same time instant. On the camera side, the camera captures the pattern-

illuminated image at 5ms. With a refresh rate of the camera at about 30 frames per

second (which is similar to that of most of the CCD cameras), the camera captures
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the scene-texture image at 40ms, shortly after the projector projects the entirely

white illumination on the object. At 50ms a new capture-projection cycle will

resume. With the aforementioned capture-projection strategy, the system could

capture 20 image pairs (pattern-illuminated image and scene-texture image) per

second.

The colored pattern illumination in our system is designed after the princi-

ple of pseudorandom array [153]. The grid points, which are the intersection of

neighboring rhombic pattern elements, are chosen as feature points. We employed

an encoding mechanism described in [153] to assure the uniqueness of each grid

point. The 2D pseudorandom color pattern of 65 × 63 elements that have red,

green, blue, or black colors for the pattern elements (the foreground), and white

color for the background, together with the pattern’s inverse, are shown in Fig.

3.2. The sum of the two images is an entirely white image, i.e., for every pixel,

RGB[I(x, y)] + RGB[INV (x, y)] = (255, 255, 255). To human’s sensing the

pattern and the inverse pattern are visually integrated over time. Over time the

illumination appears like fluorescent light to humans.

Next, the 3D positions of the key facial landmarks are located by a combined

use of the the pattern-illuminated image and the scene-texture image.

3.3.2 Facial Feature Localization

An image pair composed of a pattern-illuminated image and the corresponding

scene-texture image will be derived in each projection-capture cycle. From the

pattern-illuminated image, the 3D positions of the grid points can be determined

from the inter-geometry of the projector and camera and the intrinsic parameters

of the two instruments, through triangulation; from the scene-texture image, some

salient facial landmarks can be located with ease. How to locate the 3D positions

of the facial features from the two modalities is described below.
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Figure 3.1: Capture-Projection Synchronization Strategy.
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(a)

(b)

Figure 3.2: Pattern-illuminated images: (a) image under the original illumination;
(b) image under the inverse illumination.
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Localizing 2D Positions of Key Facial Feature Points in Scene-texture Image

Automatic face detection and facial feature localization in 2D image has been an

actively researched subject for several years, and many effective methods have

been proposed in the literature.

For the sake of accuracy and efficiency of 2D facial feature localization in

scene-texture image, firstly, we employ the Adaboost [168] face detection method

to extract the position of the face in the image. We then apply the AAM [113]

method to localize the facial features in the segmented face image.

In Fig. 3.3, 25 feature points were defined from AAM localization. They lie

on or around the salient features in the face, such as the inner corner and outer

corner of the eyes, the corner of the eyebrows, the tip of the nose, and the corner

of the mouth etc., which are relatively less affected by expression variation. In

addition, all the feature points were distributed symmetrically in the frontal face,

allowing at least half of them to be located accurately when there are extreme pose

variations.

Determining 3D Positions of Grid Points in Pattern-illuminated Image

How unique code can be attributed to each position of the illuminated pattern is

an essential question in SLS. On this, there are the temporal and spatial coding

schemes. The spatial coding scheme has the advantage that 3D determination can

be achieved with a single illumination and a single image capture. It is therefore

particularly suitable for use in dynamic applications, such as the head pose esti-

mation in this case. In our work, we employed the color coding scheme described

in [153] to determine the 3D position of grid points in the pattern-illuminated im-

age. In the illuminated pattern, each grid point is encoded by the color profile of

the 2× 3 rhombic elements surrounding it, and the code is preserved in the image

data. Each of such grid points, once its position in the pattern-illuminated im-
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Figure 3.3: 2D facial features located by AAM.
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age is located, can thus have its corresponding position in the illuminated pattern

(on the projector side) identified from the unique code. With the knowledge of

inter-geometry of the projector and camera and the intrinsic parameters of the two

instruments acquired from an off-line calibration process, the 3D position of the

grid point could be calculated by a simple triangulation step.

Inferring 3D Positions of Key Facial Features

Since the interval between the capture of the pattern-illuminated image and the

scene-texture image is rather small (relative to the motion of the head), in this

work we make the simplifying assumption that the head position is constant in the

two images. With that, the grid point positions and the salient facial features in 3D

can be related through the rigidity of the human face. More precisely, we infer the

facial features from a combined use of the facial features’ positions in the scene-

texture image, the grid points’ positions in the pattern-illuminated image, and the

grid points’ 3D positions estimated from the structured light sensing step. For

each feature point in the scene-texture image, a mirror point could be found in the

pattern-illuminated image, as illustrated in Fig. 3.4(a). It would be most desirable

that the mirror point coincides with one of the grid points, as that way the 3D

position of the feature point can be read as the depth of the grid point determined

from structured light sensing. However, in practical condition, the coincidence

would hardly occur, and the 3D positions of the facial feature points would need

be interpolated from the 3D positions of the nearby grid points.

Consider a facial feature point and the image patch around it, which is illus-

trated by the yellow rectangle in Fig. 3.4(a). The window is magnified and shown

in Fig. 3.4(b). Set an n× n window centered in the mirror point M . Assume that

in this window, there are N grid points, denoted as Gi, i = 1, . . . , N . Suppose

the 3D position of Gi is Xi. Then the 3D position X of the feature point could be
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interpolated as the weighted average of the 3D positions of the nearby grid points

in the selected window, which could be formulated by Eq. 3.1, where αi is the

weight, and di in Eq. 3.2 is the 2D Euclidean distance between the i-th grid point

Gi and the mirror point M . For computational efficiency, here we only need to

make use of 2D positions of the feature point and the nearby grid points, and in

the structured light sensing step determine the 3D positions of not all grid points

but only those that are in the immediate neighborhood of some key facial feature

points. Despite that there should be certain discrepancy between the interpolated

depth and the real depth of each facial feature point, the pose estimation algorith-

m described in the following sub-section could embrace such discrepancies and

determine the head pose with the minimum influence.

X =
N∑
i=1

αiXi, (3.1)

αi =
di∑N
j=1 dj

. (3.2)

3.3.3 6 DOF Head Pose Estimation

By the aforementioned method, the 3D positions of the predefined feature points

could be determined in each frame. As a result, the correspondence between two

sets of 3D points, each set from a consecutive image frame, can be established.

Just like other computer vision tasks, notably those that require the estimation of

the motion of a rigid object from 3D point correspondences, here we encounter the

following mathematical problem. We have two 3D point sets {pi} and {p′i}, i =

1, 2, . . . , N (here, pi and p′i are considered as 3× 1 column matrices), from which

we need to determine the 3D rigid displacement (3 × 3 rotation matrix R, and
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(a)

(b)

Figure 3.4: 3D facial feature landmarking by interpolation: (a) Feature points
in the scene-texture image and the corresponding mirror points in the pattern-
illuminated image. (b) One mirror point and its neighboring grid points in an
n× n window.
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3× 1 translation vector T ) between them:

p′i = Rpi + T +Ni, (3.3)

where Ni is a noise vector. We want to estimate R and T to minimize

Σ2 =
N∑
i=1

‖p′i − (Rpi + T )‖2. (3.4)

This problem is known as the absolute orientation problem, and there are a

number of methods in the literature available to solve this problem. The solu-

tion methods can be categorized into two classes: iterative form, and closed form

[43]. Closed form solutions are generally superior to iterative methods in terms

of efficiency and robustness, because the latter suffers from the problems of not

guaranteeing convergence, becoming trapped in local minima of the error func-

tion, and requiring good starting estimate. For these reasons, we chose the closed

form solution to solve this problem. With comprehensive consideration of accura-

cy, robustness, stability, and efficiency of a number of methods, we employed the

method proposed by Umeyama [162], which is based on computing the singular

value decomposition (SVD) of a correlation matrix defined by:

H =
N∑
i=1

p′cipci
T = UΛV T , (3.5)

where pci = pi − p̄, p′ci = p′i − p̄′, p̄ = 1
N

∑N
i=1 pi, p̄

′ = 1
N

∑N
i=1 p

′
i.
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Then the optimal rotation matrix and translation vector could be calculated as

R̂ = UV T , (3.6)

T̂ = p̄′ − R̂p̄. (3.7)

As long as more than three non-colinear corresponding point pairs are given,

the method can determine the transformation parameters uniquely.

3.4 Experiments

3.4.1 Overview of Experiment Setup

In order to assess the feasibility of the proposed head pose estimation method

using imperceptible structured light sensing, we conducted an accuracy evaluation

experiment.

The projector-camera system we used in our experiment consisted of a DLP

projector with a native resolution of 1024 × 768 and a refresh rate of 120Hz

(Mitsubishi EX240U projector), and a camera of 1288× 964 resolution at 30fps

(Point Grey FL2G-13S2C-C CCD camera with Myutron FV1520 f15mm lens),

both being off-the-shelf equipments. The focal length of the camera was fixed

in 15mm, while that of the projector was in the range of 25 − 31mm. The ILS

was configured for a working distance (the distance from the camera to the mean

position of the human face) of about 800mm.

We first fixed the camera and projector rigidly as shown in Fig. 3.5, and the

projector and camera were connected to a desktop computer through VGA and

IEEE-1394b interfaces respectively. Then the projector-camera system was cal-

ibrated using an LCD monitor as the calibration object; the calibration method,
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detailed in [154], can derive the intrinsic and extrinsic parameters of the two in-

struments. Once the experimental system was set up, we could collect data for

further experiments.

Figure 3.5: Prototype of ISL system.

3.4.2 Test Dataset Collection

Because of the differences in the various sensing methods used (such as monocu-

lar vision, stereo vision, infrared vision etc.), there is no standard benchmark for

evaluating the performance of head pose estimation, and the researchers generally

tested their algorithms on the databases collected by themselves. Through review-

ing the literature, we found that the subjects in their databases range from one to

less than 10, and for every subject, the video length is about several minutes. Be-

cause of the speciality of the proposed special sensing method, we have to collect

experimental data by ourselves. The volume of our database is 15 persons, of

which nine are male and six female, and 6 of them wearing glasses. The length of
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each video sequence is about 1 minute, i.e., 1200 frames. The sequences started

with the objects facing head-on to the cameras. Several sequences were recorded

for each participant. The sequences were collected in the laboratory environment

with some global illumination changes.

Performance assessment requires ground-truth of the orientation of the head in

each frame. It is not possible and practical to acquire the ground truth manually.

In order to make the ground truth more accessible, we asked the subjects to wear

a headband to which a credit card sized white planar board has been attached,

as seen in Fig. 3.7. The white board was adjusted to be parallel with the face,

implying that the orientation of the face was equal to that of the white board.

With color coded illumination, the 3D position of any three non-collinear grid

points (named by P1, P2 and P3) on the white board could be derived by the

aforementioned approach, as shown in Fig. 3.6. Let Xi be the 3D positions of

Pi, i = 1, 2, 3, the surface normal of the white board could be formulated as

n =
(X1 −X2)× (X3 −X2)

‖(X1 −X2)× (X3 −X2)‖
. (3.8)

Eventually, the accurate ground-truth of face orientation was made directly acces-

sible. As for the position of the head, it could be interpreted through the centroid

of the white board.

3.4.3 Results

Experimental results at some frames of a subject are illustrated in Fig. 3.7. In each

sub-figure the AAM located feature points are indicated by yellow circles in the

corresponding scene-texture image. The inset image in the bottom-right corner

of each sub-figure shows the corresponding pattern-illuminated image, while the
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Figure 3.6: Ground truth on the surface orientation of human face: it was made
the same as that of a white board attached to the face, and the latter could be
computed directly for each image.

inset image in the top-right represents a qualitative description of the estimated

head pose, in which the ground-truth and the estimated head pose are implied by

a blue circle (or ellipse) and a red arrow respectively.

At the first frame, the subject was required to have his face in head-on ori-

entation with respect to the camera, so that the orientation vector of the face was

parallel with the optical axis of the camera. This is shown in the top-left sub-figure

of Fig. 3.7. The 3D positions of all 25 facial feature points were derived for the

first frame and the following frames, allowing the head poses relative to to the

camera to be estimated on the basis of the corresponding 3D point pairs.

The mean absolute estimation error of the proposed method, along with those

of three related approaches, are shown in Table 3.1. The comparison should be

considered as a reference only, since the evaluation data-sets and the systems used

to obtain the ground-truth are all different.
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It should be noticed that the mean absolute error of yaw in the proposed

method was generally larger than those of pitch and roll. We believe the rea-

son for it lies in the asymmetric inaccuracy in localizing the 2D feature points

by the AAM method, due to the illumination shadow around the eyes and nose

caused at extreme pose variations.

Table 3.1: Comparison of pose estimation errors.

Method Sensing
Mean Absolute Error (◦)
Yaw Pitch Roll

Murphy-Chutorian [119] Monocular 3.39 4.67 2.38
Morency [116] Stereo 3.50 2.40 2.60
Jimene [90] Stereo 1.85 1.61 1.20
Our method ILS 2.02 1.18 0.76

For real-time applications, efficiency is of great importance, hence we imple-

mented the proposed method in C++ using the Intel OpenCV Library to evaluate

its processing time. Through multi-thread programming, the projection-capture

process and calculation process were executed in two different threads respective-

ly, each of which was able to run in real time in a desktop with Intel Pentium D

3.0GHz CPU. Table 3.2 shows the average processing times for AAM facial fea-

tures localization, 3D depth calculation, and head pose estimation, for the given

system. Facial features localization with AAM is the most time-consuming pro-

cess. Processing times vary slightly according to the number of iterations in the

AAM algorithm. However, they all satisfy the requirement of real-time applica-

tion.
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Figure 3.7: Experimental results.

Table 3.2: Average processing time.

Subroutine AAM 3D Depth Calc. Pose Est. Total
Time (ms) 17.43 1.82 2.56 21.81
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3.5 Summary

In this chapter, we proposed a novel method of estimating head pose using im-

perceptible structured light sensing. Through elaborate pattern projection strategy

and camera-projector synchronization, pattern-illuminated images and the cor-

responding scene-texture images can be captured under imperceptible patterned

illumination. Then, the 3D positions of the facial feature points are determined by

putting together the 2D locations of the facial feature points in the scene-texture

image (that are localized by AAM), and the point cloud generated by structured

light sensing. Finally, the 6-DOF head motion is estimated from the 3D corre-

sponding feature point pairs over different frames through SVD of a correlation

matrix.

The proposed method has been tested on video sequences captured by a proto-

type of the described imperceptible structured light sensing system. Experimental

results show that the proposed method is effective, accurate, and rapid for 6-DOF

head pose estimation. The processing time is also fast enough for real-time appli-

cation.

However, there are two assumptions made in our method. One is that the posi-

tion of the human head is constant between the captures of the pattern-illuminated

image and the subsequent scene-texture image. The other is that the human head

is modeled as a rigid object. The former one will be violated when user has quick

motion, while the latter will be destroyed when there are extreme expression vari-

ation. Our future work will lie on introduction of motion compensation between

the pattern-illuminated image and the subsequent scene-texture image, and of the

use of 3D deformable model that embraces facial expression variation, so that the

two assumptions could be relaxed.

The proposed head estimation method could be adopted in many applications.

The driver-assistance system is an example, in which the driver’s mental state
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reflecting from the head pose could be monitored, once the driver is tired and

sleepy, the system can give a warning to wake up the driver. Our future work will

try to integrate the proposed method to practical applications.



Chapter 4

Embedding Imperceptible Patterns

into Regular Projection

In this chapter, we describe an approach of embedding codes into projection dis-

play for structured light based sensing, with the purpose of letting projector serve

as both a display device and a 3D sensor. The challenge is to make the codes

imperceptible to human eyes so as not to disrupt the content of the original pro-

jection. There is the temporal resolution limit of human vision that one can exploit,

by having a higher than necessary frame rate in the projection and stealing some

of frames for code projection. Yet there is still the conflict between impercepti-

bility of the embedded codes and the robustness of code retrieval that has to be

addressed. We introduce noise-tolerant schemes to both the coding and decod-

ing stages. At the coding end, specifically designed primitive shapes and large

Hamming distance are employed to enhance tolerance toward noise. At the de-

coding end, pre-trained primitive shape detectors are used to detect and identify

the embedded codes – a task difficult to achieve by segmentation that is used in

65
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general structured light methods, for the weakly embedded information is gener-

ally interfered by substantial noise. Extensive experiments including evaluations

of code imperceptibility, decoding accuracy and sensitivity analysis show that the

proposed system is effective, even with the prerequisite of incurring minimum dis-

turbance to the original projection.

4.1 Introduction

The improving performance and declining price of digital video projectors make

it possible to use them prevalently. Being able to generate arbitrarily large display

is a feature of projectors that makes them exceedingly attractive, especially in

applications that demand portability. On the other hand, the adoption of structured

light illumination has been proven to be an effective and accurate means for 3D

information perception [82]. Recently, the availability of pico projectors with

average dimensions of 4×2×1 inches has widely extended the application domain

of structured light system. There are already pocket DCs, DVs and cellular phones

(as shown in Fig. 4.1) in the consumable market that have both projector and

camera built-in, making it possible to implement structured light system in hand-

held consumer electronic products.

In other words, projector accompanied by camera has the potential of being

a device for both display and sensing, i.e., for both input and output in human-

computer interface, making it a possible device to replace traditional LCD panel,

keyboard, and touch-sensitive screen altogether in computing, at the cost of only

diminished size and weight. Projector has the potential of making a breakthrough

of dramatically downsizing portable computing without sacrificing display size.

For these reasons projector-camera (ProCam) system has been actively re-

searched in the last few years. Many research groups apply projectors in un-
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Figure 4.1: Mobile devices with pico projector.

conventional ways to develop new and innovative information displays that go

beyond simple screen presentations [123].

Some researchers designed structured light system in the non-visible spectrum

[48]. That way the media for regular projection and structure light sensing can be

made separate. However, additional hardware could be reduced and device size

could be diminished if structured light and regular projection can be achieved

through the same projector. This leads to the concept of Imperceptible Structured

Light (ISL). ISL modulates the projected display either spatially or temporally to

embed code patterns for structured light sensing. In principle, due to limitation of

human visual perception, the embedded code patterns can be made undetectable

to the user, but cameras synchronized to the modulation are able to reconstruct

the embedded codes for structured light sensing. The embedding of code patterns

into regular projection can be used for a variety of applications including projector

calibration, camera tracking, and 3D scanning.

There is however challenge in embedding codes into regular projection. While
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the codes should be made as undetectable as possible to the user, they have to be

decodable to the camera for the purpose of structured light sensing. On top of

the dilemma, there is the inevitable fact that the displayed signals are generally

corrupted by substantial noise that arises from the nonlinearity of the projector,

the sensing defects of the camera, and the variation of the ambient illumination.

The objective of this work is to deal with the dilemma.

This chapter describes a novel method of embedding imperceptible structured

codes into arbitrarily intended projection. Through precise projector-camera syn-

chronization, structured codes consisting of three primitive shapes are embedded

into the projection, in a way that is imperceptible to viewers but extractable from

the ”difference image” between successive images captured by a camera. To make

the decoding process more robust against noise, we do not extract the codes by

region segmentation in the image domain. Instead we employ specially trained

classifiers to detect and identify the codes. To enhance the error tolerance fur-

ther, specially designed primitive shapes and large Hamming distance are adopted

in the spatial coding. Even with some bits of the codewords missed or wrongly

coded, the correct correspondence could still be derived correctly.

The remainder of this chapter is structured as follows. In Section 4.2, related

works on imperceptible structured light sensing are briefly reviewed. The prin-

ciple of embedding imperceptible codes along with robust coding and a noise-

tolerant decoding mechanism are described in Section 4.3. In Section 4.4, system

setup and experimental results are shown. Summary is offered in Section 4.7.

4.2 Previous Works

A proof of concept for embedding invisible structured light patterns into DLP

(Digital Light Processing) projections first appeared in the ”Office of the Future”
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project [136]. In this work, binary codes are embedded by projecting temporal-

ly alternating code images and their complements. Provided that the frequency

of projection reaches the flicker fusion threshold (≥ 75Hz), the pattern and the

inverse pattern are visually integrated over time in human perception, and the il-

lumination has the appearance of a flat field (”white” light) to humans. However,

the demonstration required significant modification effort on the projection hard-

ware and firmware, including removal of the color wheel and reprogramming of

the controller. The resulting images were also in greyscale only. The implemen-

tation of such a setting was impossible without mastering and full access to the

projection hardware.

Cotting et. al. introduced a coding scheme [34] that synchronizes a camera to a

specific time slot of a DLP micro-mirror flipping sequence in which imperceptible

binary patterns are embedded. However, not all mirror states are available for

all possible intensities, and the additional hardware, DVI repeater with tapped

vertical sync signal, is not an off-the-shelf instrument.

However, with the development of digital projection technology, some so-

called 3D compatible DLP projectors with fresh rate of 120Hz or higher emerged

recently. This makes it possible to implement imperceptible structured light with-

out any hardware modification or extra assisting hardware. Many researcher began

to study how to determine the embedded intensity properly to guarantee the code

imperceptibility.

In [61], subjective evaluation results and their statistical analysis on the visual

perceptibility of embedded codes in different ways were reported. The factors af-

fecting code visibility are also concluded. Park et al. [127] presented a technology

for adaptively adjusting the intensity of the embedded code with the goal of min-

imizing its visibility. It was regionally adapted depending on the spatial variation

of neighboring pixels and their color distribution in the YIQ color space. The final
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code intensity was then weighted by the estimated local spatial variation. Since

two manually defined parameters adjusted the overall strength of the integrated

code, the system was not able to automatically calculate an optimized intensity.

Grundhofer et al. [9] proposed a method considering the capabilities and limita-

tions of human visual perception for embedding codes. It estimated the Just No-

ticeable Differences (JND) based on the human contrast sensitivity function and

adapted the code intensity on the fly through regional properties of the projected

image and code, such as luminance and spatial frequencies. The shortcoming of

this method was that some parameters need be pre-measured using some optical

devices (e.g. photometer), which were not accessible to nonprofessional users.

To the best of our knowledge, up to now, few works focus on the decoding

method in imperceptible code embedding configuration, especially when huge

external noises exist.

4.3 Method

4.3.1 Principle of Embedding Imperceptible Codes

The fundamental principle behind imperceptible structured code embedding is the

temporal integration achieved by projecting each image twice at high frequency:

a first image containing actual code information (e.g., by adding or subtracting a

certain amount (∆) to or from the pixels of the original image, depending upon

the code) and a second image that compensates for the distortion in the first im-

age. The vital aspects of ISL sensing are code embedding and projector-camera

synchronization.

Since general projection is in color, it is possible to embed color code through

three different channels theoretically. However, to enhance code robustness to-
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ward noise, we use binary code and embed it into all three color channels simul-

taneously. Let B, O, I and I ′ be the binary code image, the original image, the

projected image, and the complementary image respectively. Then the projected

image and complementary image could be formulated as

Ii(x, y) = Oi(x, y) + P (x, y), (4.1)

I ′i(x, y) = Oi(x, y)− P (x, y), (4.2)

P (x, y) =

∆, when B(x, y) = 1;

0, when B(x, y) = 0.

(4.3)

where i = {R,G,B} indicates red, green and blue channels, ∆ is the embedded

intensity.

To avoid intensity saturation at lower and higher intensity levels when adding

or subtracting ∆, the original image needs to have the intensity range in each color

channel compressed to between ∆ to 255 − ∆. Since the embedded intensity

required in the coding is small enough, the visual degradation due to contrast

reduction is negligible.

The degree of imperceptibility thus depends upon the embedded intensity. A

larger intensity ensures that the code be more tolerant toward noise and more read-

able in the image of the projection, whilst a smaller intensity makes the embedded

codes more invisible. In our design, code imperceptibility has higher priority, and

thus embedded intensity is set to a very small value.

In order to achieve imperceptible structured light projection, the frequency of

projection must exceed the flicker fusion threshold, which is 75Hz for most of

the people. Here we take one projection-capture cycle as an example to explain

the strategy of projector-camera synchronization, which is illustrated in Fig. 4.2.

Firstly, we ensure that the projector projects an image every 10ms, i.e., at 100Hz.
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Figure 4.2: Projector-camera synchronization and basic principle for embedding
and extracting imperceptible codes.
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As shown in Fig. 4.2, along the time axis, the projected image I and the comple-

mentary image I ′ are projected at the time instants 0ms, 10ms respectively. With

a refresh rate of the camera at about 100 frames per second, the camera captures

the image C and C ′ at 5ms and 15ms, shortly after the projector projects the pro-

jected image and complementary image to the scene. At 20ms a new projection-

capture cycle will resume. With the aforementioned projection-capture strategy,

the system could capture 50 image pairs per second.

The embedded codes could be internally and simply extracted from the ”sub-

traction image” 1 between consecutively captured images as

S(x, y) = max
i

[Ci(x, y)− C ′i(x, y)], i = {R,G,B}. (4.4)

Ideally, the subtraction image should be a binary image that has maximum value

of 2∆ and minimum value of 0. However, the subtraction image in reality is gen-

erally disturbed by large external noises. Since the embedded intensity is always

small, the subtraction image has low signal-to-noise ratio. It is generally nontriv-

ial to retrieve the embedded codes. In the rest of this section, we describe how

robust coding and noise-tolerant decoding approaches can help tackle the issue.

4.3.2 Design of Embedded Pattern

The strategy of encoding in general structured light methods could be classified

into two categories [82]: time multiplexing and spatial multiplexing. The former

one can achieve denser data samples with higher accuracy, but at the expense

of requiring multiple illuminations and image captures over time, which is not

suitable for imperceptible code embedding [61] and dynamic scenes. In contrast,

1All the subtraction images in this chapter are scaled to [0, 255] for illustration purpose.
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(a) (b) (c)

Figure 4.3: The primitive shapes: (a) cross, (b) sandglass, (c) rhombus.

the latter one labels each pattern position by the appearance profile (color, shape

or their combination) of the neighboring positions. The appearance profile can be

about various gray levels, colors, or geometric primitives, and the coding methods

include De-Bruijn sequences [25, 145, 126], M-arrays [44, 117, 115, 125], and

non-formal coding [110, 45, 95, 66]. The spacial coding scheme has the advantage

that 3D determination could be achieved with a single pattern.

Considering the constraints of imperceptible code embedding, we employ the

spacial multiplex scheme to design our pattern. Due to the choice of using binary

code for robust code embedding, the symbols cannot be coded with different col-

ors, so we use an alphabet set comprising three different geometrical primitives:

cross, sandglass, and rhombus, as shown in Fig. 4.3. There are three advantages of

this configuration. First, all the shapes own a natural center point, which simplifies

the shape identification process in the decoding stage. Then, there are sufficient

variations between different shapes; even with large disturbance from noise on the

shapes, the decoding method could discriminate them. Moreover, the directional

information carried by the cross shape could rectify the observation window dur-

ing the step of neighborhood detection without enforcing any other constraints.

In the decoding stage, the centroid of each detected primitive would be con-

sidered as the feature point position, and the 9-bit codeword associated to each

feature point is composed of the elements in the 3 × 3 window centered on it.

In traditional structured light methods, the uniqueness of the codeword is usually

assured by M-arrays (perfect maps), which are random arrays of dimensions r×v

in which a sub-matrix of dimensions n×m appears only once in the whole pattern
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[44]. The M-arrays give a total of rv = 2nm−1 unique sub-matrices in the pattern

and a window property of n ×m. However, the Hamming distance between the

codewords is 1, which is generally too small for our code embedding scenario in

which the codeword retrieval errors could be large due to noise. In our system, we

generate a matrix of dimensions 27 × 29 using the method proposed by Albitar

[13], in which 95.97% of the codewords have a Hamming distance higher than 3

and the average Hamming distance is H̄ = 6.0084, so that even some bits in the

codeword are missed or incorrectly coded, the codeword is still distinguishable.

On the basis of this matrix, the binary code image composed from the primitive

shapes appears like the one illustrated in Fig. 4.4, in which the size of each prim-

itive shape is a collection of 11× 11 pixels while the interval between each shape

is 11 pixels. The total number of feature points is 783.

Figure 4.4: The embedded binary code image.
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4.3.3 Primitive Shape Identification and Decoding

In the decoding stage, the existence of intense noises (from projector projec-

tion, camera sensing, ambient illumination and object surface reflection influence)

makes it impossible to segment the primitive shape by the integrated use of region

segmentation and edge or contour detection as in ordinary structured light meth-

ods. Here, we regard the primitive shapes as objects to ”identify” and ”detect”

rather than ”segment”.

Compared with other object identification or recognition methods, the ma-

chine learning approach proposed by P. Viola [167] has been shown to be capable

of processing images rapidly with high detection rates for visual object detection.

The approach is adopted here for training detector to identify the three primitive

shapes. Below we use cross shape as an example to describe the procedure of

detector training.

The performance of training-based detector has a great deal to do with the

availability of training samples. Unlike generic objects like human face, body or

vehicle, which have a large number of samples in a great many of public databas-

es, we have to collect the specific training samples ourselves in the required con-

figuration. 500 color images with different contents were collected from Google

Image [2], and 40 cross shapes were embedded in those images at different posi-

tions to generate 500 pairs of projected images and complementary images.

A white planar projection screen was placed in front of the projector-camera

system with the distance of 800mm, the orientation of the screen was adjusted

to make the projection area appear as a rectangle, i.e. the projection screen was

parallel to the projection plane of the projector. By projecting the images, 500 sub-

traction images could be derived from image capture exercises. The sub-images

containing cross shapes were then segmented by manual labeling, which were

considered as positive training samples. The background images with holes filled
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by random noise were divided into small patches to generate negative training

samples. The training sample preparation process is shown in Fig. 4.5.

Figure 4.5: Training sample preparation.

To obtain the optimal performance, the positive samples were resized to 20×

20, the extended haar-like features and Gentle Adaboost algorithm were em-

ployed, following the suggestion in [132]. Eventually, from over 7000 positive

samples and 3000 negative samples, a 16-stage cascade classifier for cross detec-

tion was trained. Following the same procedure, the detectors for sandglass and

rhombus shapes could be derived as well.

4.3.4 Codeword Retrieval

By using the pre-trained primitive shape detectors, the centroid of each primitive,

i.e., the position of each feature point, can be determined. Once a feature point

is extracted from the image, its codeword can be produced from the associated
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3 × 3 intensity window centered on the feature point. As shown in Fig. 4.6, the

codeword of P0 is calculated as CW =
∑8

i=0 10i × Ci, where Ci is the code of

point Pi. It is time-consuming and inefficient for searching the primitive shapes

in the whole image, the directional information embraced in the cross shape could

rectify the search window around it to find the other two shapes. As illustrated in

Fig. 4.6, the cross shapes are detected first, then two directions are fitted through

the intensity distributions in the detected rectangle, and in the end, rhombus and

sandglass shapes are detected in the nearby area along the two directions. The

corresponding point on the projector image plane is known a priori. This way 3D

position on the object surface can be determined via triangulation. The above is

the 3D sensing step we use in the system.

Figure 4.6: An example of codeword retrieval.
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4.4 Experiments

4.4.1 Overview of Experiment Setup

To assess the feasibility of the proposed method for embedding imperceptible

codes in regular projection, we conducted experiments on embedded code imper-

ceptibility evaluation, primitive shape detector accuracy evaluation and primitive

shape detector sensitivity evaluation.

In order to evaluate the performance of our method in different platforms,

we set up two projector-camera systems using different equipment. The first one

(PROCAMS-A) consisted of a consumer-level DLP projector (Mitsubishi EX240U

projector) of 1024× 768 resolution and 120Hz refresh rate, and a CMOS camera

(Point Grey Flea 3 FL3-U3-13S2C with Myutron FV1520 f15mm lens) of 1328×

1048 resolution and 120fps. While the second one (PROCAMS-B) consisted of

a Pico DLP projector with a native resolution of 640 × 480 and an interface for

firmware configuration (TI DLP Pico Projector Development Kit 2), plus a CCD

camera of 648 × 488 resolution at 120fps (Point Grey FL3-FW-03S1C camera

with Myutron FV0622 f6mm lens).

For PROCAMS-A, we first fixed the camera and projector rigidly, and the pro-

jector and camera were connected to a desktop computer through VGA and US-

B3.0 interfaces respectively. Since there was no synchronization signal output in

the consumer-level projector, the synchronization between projectors and cameras

was implemented through software delay. The hardware configuration is shown in

Fig. 4.7(a). For PROCAMS-B, the projector and camera were mounted on a spe-

cial designed framework rigidly, and were connected to a laptop computer through

HDMI and IEEE-1394 interfaces respectively, and the hardware trigger signal of

the camera was connected to the sync. output of the projector for synchronization

between them, which are illustrated in Fig. 4.7(b).
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(a) PROCAMS-A

(b) PROCAMS-B

Figure 4.7: Hardware configuration of two projector-camera systems.
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Moreover, the projector-camera systems were calibrated using an LCD moni-

tor as the calibration object; the calibration method, detailed in [154], could derive

the intrinsic and extrinsic parameters of the two instruments. Once the experimen-

tal system was set up and calibrated, we could conduct further experiments.

4.4.2 Embedded Code Imperceptibility Evaluation

Embedded code imperceptibility and user satisfaction are of the first priority in the

system design. The imperceptibility depends on the embedded intensity. We con-

ducted a subjective evaluation using PROCAMS-A based on a questionnaire. Ten

persons were invited to participate in this experiment, of which six were male and

four were female, and seven wearing glasses. Another 500 images were collect-

ed from Google Image [2] randomly, the content of the images included natural

scene, portrait, architecture, animals and so on. Our proposed pattern was em-

bedded into all the collected images with different intensities. The viewers were

seated in front of a white planar screen at a distance of about 1m, and asked

to comment on the images projected to the screen. The questions asked were

simplified from the questionnaire in [61], focusing on the feeling of flickering,

the recognition of image deterioration, and the overall satisfaction for projection

quality. The score for each question was divided into 10 levels.

The average scores of the subjective evaluation are illustrated in Fig. 4.8.

When the embedded intensity is small, i.e., ∆ = 5, 10, the viewer could rarely

notice the embedded codes and were satisfied with the projection quality. With

the increase of the embedded intensity, the viewers’ sense of flickering and im-

age degradation became stronger. When ∆ = 25, almost every viewer was not

satisfied with the projection quality.

In practice, because it was difficult to retrieve weakly embedded codes with the

standard commercial cameras, we choose ∆ = 10 in our configuration, striking a
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compromise between user satisfaction and code imperceptibility.

Figure 4.8: Subjective evaluation results for code imperceptibility.

4.4.3 Primitive Shape Detection Accuracy Evaluation

After embedded code imperceptibility evaluation, the experiments for primitive

shape detection accuracy were carried out. Considering the training data for prim-

itive shape detector training was collected by PROCAMS-A, we first evaluated the

primitive shape detection accuracy on PROCAMS-A.

To assess accuracy, the experimental data with ground-truth were required.

Three different primitives and the spatially coded pattern image were embedded

into 500 images used for imperceptibility evaluation respectively, with intensity

∆ = 10. Then the projected and complementary images were projected succes-

sively to a projection surface, while the camera conducted synchronized capture.
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The projection surface is the same as the one used for training data collection.

Then the subtraction images embracing embedded codes information were de-

rived for accuracy evaluation. The ground-truth was obtained by manual labeling

in the image data captured under binary pattern illumination.

Experimental results in some subtraction images are presented in Fig. 4.9.

The four sub-figures display the cross (top-left), sandglass (top-right), rhombus

(bottom-left) shapes, and the spatially coded pattern (bottom-right) respectively.

For qualitative evaluation, the detected features are indicated by rectangles, and

in bottom-right sub-figure, the cross,sandglass and rhombus shapes are separately

marked by red, green and blue rectangles. The accuracy of primitive detector are

evaluated by hit rate (H), missing rate (M ), false rate (F ) and position error (Ed),

which are formulated as

H =
Nh

Nt

, (4.5)

M =
Nm

Nt

, (4.6)

F =
Nf

Nt

, (4.7)

Ed =
√
ε2X + ε2Y , (4.8)

εX =
1

Nh

N∑
i=1

|Xd −Xg|i, (4.9)

εY =
1

Nh

N∑
i=1

|Yd − Yg|i, (4.10)

where Nt is the total embedded primitive shape number, Nh, Nm and Nf are the

number of correct detections, missed detections and false detections respective-

ly. εX and εY are the average feature point detection errors along the x-axis and

y-axis, (Xd, Yd) and (Xg, Yg) are the detected coordinate and ground-truth respec-

tively.
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The more detailed quantitative testing results are listed in Table 4.1. Through

the proposed method, 95.74% of the embedded feature points could their corre-

spondences found correctly. By analyzing the missed and false detection cases,

we find that the mistakes were mainly caused by large noise that occludes the

embedded codes, implying that external noise has the greatest influence on the

decoding process.

Figure 4.9: Some qualitative experiment results for accuracy evaluation.

4.5 Sensitivity Evaluation

It is obvious that the performance of our method depends on the performance of

pre-trained primitive shape detectors, which is determined by the training process

to a great extent. Generally, for the training based methods, generalization of the
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Table 4.1: Benchmark for sensitivity evaluation.

H(%) M(%) F(%) Ed(pixel) Corr. Acc.(%)
Cross 94.53 3.95 1.52 1.632 —
Rhombus 95.21 3.59 1.20 1.833 —
Sandglass 95.50 3.63 0.87 1.542 —
Whole Pattern 92.11 11.06 5.28 2.013 95.74

training results is an issue, especially, when the scenarios between training stage

and operation stage are quite different.

In the framework of our method, due to the different sensor-object localiza-

tion, different projection surfaces, different surrounding environment and differ-

ent hardware platforms, the generalization of the pre-trained detector is of great

importance, since it is impractical even impossible to re-train the detector for dif-

ferent scenarios. It is necessary to certify the validity of our method in different

application scenarios.

In this section, we will evaluate the the sensitivity of primitive detectors under

different circumstances, including variations on working distance, projection sur-

face orientation, projection surface shape, projection surface texture and hardware

configuration. Since the settings of accuracy evaluation in Section 4.4.3 are the

same as training sample collection stage, the results are considered as the bench-

mark for sensitivity evaluation.

4.5.1 Working Distance

The working distance is the average distance from the projector-camera system to

the object surface. When the intrinsic parameters of the projector and camera (fo-

cal length and resolution) are fixed, the size of the primitive shapes in subtraction

image data is determined by the working distance directly. In the configuration of
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training stage, the working distance is set as 800mm, the size of primitive shapes

in image data is about 20 pixels. In the operation stage, the working distance is

changed to 500mm, 1200mm and 1600mm, the focal length of procams is slight-

ly adjusted to get sharp projection and clear capture. Some subtraction images

with detection results are shown in Fig. 4.10, the size of the primitive shapes are

around 15, 35 and 45 pixels respectively.

(a) 500mm (b) 1200mm

(c) 1600mm

Figure 4.10: Cross shape detection in different working distances.

The detailed quantitative results are listed in Table 4.2. It is clear that when

the working distance decreased to 500mm, the hit rates dropped, because it is

difficult for primitive shape detectors to find small size shapes in image data. For

the enlarged shapes in larger working distance, the performance of detectors are

almost the same as the benchmark.
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Table 4.2: Primitive shape detection accuracy in different working distances.

Distance Primitive Hits(%) Missed(%) False(%) Ed(pixel)

500mm
Cross 86.21 11.63 2.16 1.814
Rhombus 85.83 12.57 1.60 1.836
Sandglass 87.49 11.64 0.87 1.712

1200mm
Cross 94.44 4.32 1.24 1.728
Rhombus 94.86 4.23 0.91 1.904
Sandglass 94.49 4.62 0.89 1.572

1600mm
Cross 94.52 4.11 1.37 1.731
Rhombus 95.06 3.92 1.02 1.910
Sandglass 95.39 3.68 0.93 1.591

4.5.2 Projection Surface Orientation

Besides the size of the primitive shapes in image data, the distortions will also

influence the performance of the pre-trained detectors. The distortions mainly

come from the variations on the orientation of the projection surface w.r.t. the

sensing system and the variations on the shape of the projection surface. First, the

detector accuracy will be evaluated under different projection surface orientations.

In training data collection stage, the images are projected to a planar surface

that is almost parallel to the image plane of the camera. Now in operation stage,

the orientation of the surface is adjusted to 10◦, 20◦, 30◦, 40◦, 50◦ in yaw direction,

as shown in Fig. 4.11. In each sub-image, the upper part is the captured image

to show the extent of distortion, while the lower part is the magnified subtraction

image of the subregion indicated by the rectangle in captured image. The detection

results are also shown in the subtraction images. More detailed quantitative results

are listed in Table 4.3.

In the testing results, when the rotation degree θ is small, i.e.,θ = 10◦, 20◦, the

performance is almost the same as benchmark. With the increase of the rotation

degree, the hit rates decrease slightly. When θ = 50◦, more than 85% primitive
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Table 4.3: Primitive shape detection accuracy in different surface orientations.

Orientation Shape Hits(%) Missed(%) False(%) Ed(pixel)

10◦
Cross 94.51 3.96 1.53 1.635
Rhombus 95.08 3.60 1.22 1.845
Sandglass 95.46 3.74 0.80 1.544

20◦
Cross 94.50 3.96 1.54 1.634
Rhombus 95.08 3.64 1.08 1.848
Sandglass 95.43 3.77 0.80 1.564

30◦
Cross 93.47 4.50 2.03 1.938
Rhombus 92.15 6.37 1.48 2.141
Sandglass 92.43 6.78 0.79 2.011

40◦
Cross 90.19 7.70 2.11 2.414
Rhombus 89.42 9.50 1.08 2.809
Sandglass 91.23 7.87 0.90 2.374

50◦
Cross 85.91 12.03 2.06 2.728
Rhombus 85.48 12.81 1.71 2.904
Sandglass 86.87 12.27 0.86 2.572

shapes are still detected correctly, which satisfies the application requirements.

4.5.3 Projection Surface Shape

The alteration of projection surface shape will also result in the distortion of prim-

itive shapes in image data. In training stage, the negative and positive sample were

collected from the images projected to a planar surface. In this test, the projection

surface are three different non-planar surfaces (convex paper, concave paper and

plaster statue). Some test images and the statistical results are shown in Fig. 4.12

and Table 4.4 respectively. In all three surfaces, although the hit rates have small

decrease, it is still sufficient to derive correct correspondences for triangulation.

In the plaster statue case, the missing detections are mainly found in the regions

where the surface has sudden change.
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(a) 10◦ (b) 20◦

(c) 30◦ (d) 40◦

(e) 50◦

Figure 4.11: Rhombus shape detection in the projection surface with different
orientations.
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(a) Convex Paper (b) Concave Paper

(c) Plaster Statue

Figure 4.12: Cross shape detection in different projection surfaces.
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Table 4.4: Primitive shape detection accuracy in the projection surface with dif-
ferent shapes.

Surface Shape Hits(%) Missed(%) False(%) Ed(pixel)

Convex Paper
Cross 93.53 4.86 1.61 1.756
Rhombus 93.25 5.29 1.46 2.043
Sandglass 94.14 4.85 1.01 2.122

Concave Paper
Cross 93.64 4.84 1.52 1.762
Rhombus 93.82 4.70 1.48 2.108
Sandglass 93.76 5.41 0.83 2.135

Plaster Statue
Cross 84.81 13.33 1.86 2.028
Rhombus 85.73 13.06 1.21 1.904
Sandglass 86.09 13.03 0.88 2.075

4.5.4 Projection Surface Texture

The texture on the projection surface will affect the quality of captured images. In

the benchmark training stage, the projection surface is textless and in white color.

In the operation stage for test, the images are projected to a planar surface in green

color, a cork board and a poster with text and images, as illustrated in Fig. 4.13.

The quantitative results are listed in Table 4.5. The results indicate that the texture

variation on the projection surface has little influence on the performance of prim-

itive shape detectors, since in our method the decoding process was conducted in

subtraction image, which would weaken the texture influence to a certain extent.

4.5.5 Projector-Camera System

If the pre-trained detectors are used in another applications with different hard-

ware configuration, the performance of the detectors would be affected, since the

differences in the resolution of projector and camera (high vs. low), the camera

sensor (CCD vs. CMOS) and the optical parameters (different lens) will change

the appearance of the primitive shape in image data. In this test, the primitive de-
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(a) Green paper (b) Cork board

(c) Poster

Figure 4.13: Sandglass shape detection in different projection surface textures.
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Table 4.5: Primitive shape detection accuracy in different projection surface tex-
ture.

Texture Shape Hits(%) Missed(%) False(%) Ed(pixel)

Green Paper
Cross 94.41 4.17 1.42 1.634
Rhombus 95.19 3.66 1.15 1.836
Sandglass 95.49 3.63 0.88 1.558

Cork Board
Cross 93.41 5.07 1.52 1.641
Rhombus 94.25 4.43 1.32 1.850
Sandglass 94.92 4.16 0.92 1.623

Poster
Cross 91.74 6.63 1.63 2.024
Rhombus 90.28 8.25 1.47 1.996
Sandglass 92.19 6.76 1.05 1.762

tectors trained by the data collected from PROCAMS-A are applied in PROCAMS-

B during the operation stage.

Due to the low projector resolution in PROCAMS-B, the dimension of the

original pattern image is too large for embedding, so we employ two method to

solve this issue, the first one is to select a sub-region of the original pattern image

as a new pattern image and the second one is to resize the original pattern image to

coincide the projector resolution. Some detection results in the subtraction images

derived from two different embedding methods are illustrated in Fig. 4.14(b) and

4.14(c). The quantitative results are also shown in Table 4.6.

Compared with the benchmark, it is obvious that the performance in PROCAMS-

B degrades intensively, especially in the resized pattern case. By analyzing the

missed and false detection cases, we find that the mistakes were mainly caused by

large noise from the low luminance of the pico projector and the extremely small

primitive shapes in image data.
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(a) Captured Image

(b) Cropped Pattern (c) Resized Pattern

Figure 4.14: Primitive shape detection in PROCAMS-B with different embedding
approaches.



CHAPTER 4. EMBEDDING CODES INTO NORMAL PROJECTION 95

Table 4.6: Primitive shape detection accuracy in PROCAMS-B with different em-
bedding approaches.

Shape Hits(%) Missed(%) False(%) Ed(pixel)

Cropped Pattern
Cross 80.23 14.43 5.34 3.028
Rhombus 79.93 14.17 5.92 2.981
Sandglass 81.09 13.28 5.63 2.812

Resized Pattern
Cross 30.52 59.23 10.25 2.628
Rhombus 30.63 58.03 11.34 2.913
Sandglass 30.80 57.93 11.27 2.874

4.6 Applications

The proposed method enables a common projector to serve the dual role of a

display device as well as a 3D sensor, which can be extended or integrated to

many applications. In this section, we will show three cases to demonstrate the

feasibility of our method.

4.6.1 3D Reconstruction with Normal Video Projection

3D reconstruction is the most straightforward application for structured light sens-

ing, for the sake of showing the effectiveness of our method in 3D reconstruction

task, we compared our method with general structured light method using visible

patterns.

As shown in Fig. 4.15-(a1)(b1)(c1) and Fig. 4.15-(a2)(b2)(c2), three objects

(sphere, cone and cylinder) with known dimensions were illuminated by visible

binary pattern image (the same as Fig. 4.4) and code embedded normal projection

respectively.

In the general structured light scenario, some feature points were extracted by

segmentation and shape identification using the method proposed in [13]; whilst
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in our code embedded normal projection scenario, the feature points were detected

and classified through the pre-trained primitive shape detectors. The depth value

of each feature point was calculated through triangulation using the intrinsic and

extrinsic parameters of projector and camera. Then on the basis of point clouds

calculated through our method, surfaces were rendered as illustrated in Fig. 4.15-

(a3)(b3)(c3). Since the dimensions of the objects are known, we can conducted

quantitative accuracy assessment. The residual mean error Eµ and standard devi-

ation Eσ of the calculated 3D points with respect to ground-truth were listed in

Table 4.7. It is evident that our method almost has the same performance as gen-

eral structured light method in 3D reconstruction. By reason that the textures on

cylindrical object obstruct the code retrieval, of which the reconstruction error is

greater than that of another two objects. It is worth pointing out that in our method

the decoding process was conducted in subtraction image, which would weaken

the texture influence to a certain extent.

Figure 4.15: Some results of 3D reconstruction.
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Table 4.7: The comparison of 3D reconstruction accuracy.

Object
General SL [13] Our Method

Eµ(mm) Eσ(mm) Eµ(mm) Eσ(mm)
Sphere 1.502 0.576 1.410 0.587
Cylinder 2.054 0.824 1.939 0.762
Cone 1.383 0.557 1.391 0.564

4.6.2 Sensing Surrounding Environment on Mobile Robot Plat-

form

For the purpose of illustrating the proposed method’s potential applications in

robotic system working in varied environment, we mounted a projector and a

camera rigidly on special designed frame, and then fixed the frame on a tripod

affixed on a mobile robot manufactured by ARRICK Robotics [1], as shown in

Fig. 4.16.

For a mobile robot, one of the essential capabilities is to sense the surrounding

environment for navigation, obstacle avoidance, object recognition and some oth-

er purposes. We assist the visual sensing through a normal grey illumination with

invisible codes embedded. By retrieving the embedded codes, correspondences

between projection plane and image plane could be established accurately and ef-

ficiently. In Fig. 4.17 (a) and (c), a green tea can and toy bricks were located in

the illumination area of the projector, 3D depth information of certain points on

the objects was acquired through simple triangulation in real-time. The surfaces

of the objects were rendered in 3D as shown in Fig. 4.17 (b) and (d). Although

the ground truth of the objects was not available, such qualitative examinations

showed that the reconstructed surfaces were of reasonable quality.
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Figure 4.16: Integration with mobile robot system.

Figure 4.17: Some 3D sensing results.
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4.6.3 Natural Human-Computer Interaction

Besides sensing capabilities, the mobile robot should also provide an effective

channel for the interaction between users, such as an interface for system con-

figuration or a display panel to show prompt information. In traditional way, an

LCD monitor plus mouse-and-keyboard or an LCD touch-screen are attached to

the robot, inevitably increasing the weight and size of mobile robot, let alone more

energy consumption. Our method enables a common projector to serve the dual

role of a display device as well as a 3D sensor with the assistance of camera, pro-

viding a platform for more natural user interface schemes. As shown in Fig. 4.18

(a), a system configuration interface (Fig. 4.18 (b)) was projected onto a desk sur-

face, a user was operating on the projected desk surface with bare-hand (Fig. 4.18

(c)). From an image alone, say of a finger on top of a table surface, one cannot

tell whether the finger is actually touching the table surface or not. The case of

a finger hanging in air, and the case of a finger touching the table surface, could

both produce the same image to the camera. By incorporating the structured light

invisible embedded into the projection, 3D acquisition can be made possible, and

contact identification and finger movement recognition should be more readily

tackled. It is possible to convert any textureless light color plane (table-surfaces,

whiteboards or walls) to be a touching sensitive screen, providing more natural

and flexible interface for bare-hand human-robot interaction.

4.7 Summary

We have described a novel system of embedding imperceptible structured codes

into normal projection that strikes the balance between imperceptibility and de-

tectability of the codes. Through precise projector-camera synchronization, struc-

tured codes consisting of three primitive shapes are embedded into normal projec-
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Figure 4.18: Touch sensitive user interface.
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tion, in a way that is imperceptible to the user but extractable by a camera (through

the ”difference image” between successive images). The disturbances caused by

external noise make it difficult to retrieve the codes by the region segmentation

approaches adopted in general structured light systems. Instead of segmenting the

codes, specially trained classifiers are employed to detect and identify them. To

increase the robustness of code extraction, large Hamming distance are adopted

in spatial coding. Even if some bits are missed or wrongly decoded, the correct

correspondence between the projection panel and the image plane could still be

arrived at correctly for structured light sensing. Extensive evaluations shows that

the method is a promising one.

In the current system, the image capture interval is 10ms. In sensing object

that moves fast, the substantial displacement between successive images will re-

sult in blur or destruction of the embedded codes in the difference image. Some

compensation methods need be in place to deal with the problem. In addition, the

embedded code could be denser for more precise 3D sensing. New coding scheme

capable of generating denser patterns should be used. The proposed method en-

ables a common projector to serve the dual role of a display device as well as a

3D sensor. That provides a platform for more natural user interface schemes. Our

future work will lie on these directions.



Chapter 5

Hand Segmentation in

Projector-Camera Systems

One goal of projector-camera system is let human finger be used like a mouse

to click and drag objects in the projected content. It requires segmentation of

the human palm and fingers in the image data captured by the camera, which

is a challenging task in the presence of the incessant variation of the project-

ed video content and the shadow cast by the palm and fingers. In this chap-

ter, we describe a coarse-to-fine hand segmentation method for projector-camera

system. After rough segmentation by contrast saliency detection and mean shift-

based discontinuity-preserved smoothing, the refined result is confirmed through

confidence evaluation. Extensive experimental results are shown to illustrate the

accuracy and efficiency of the approach.
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5.1 Previous Works

Hand segmentation, as the first step for most barehand-based applications, plays

an important role in the robustness, accuracy and efficiency of a HCI system.

The approaches for hand segmentation have been studied extensively in computer

vision society.

Among them, skin color detection [91, 40] is very common for its simpleness

and easy implementation, and is very efficient against simple background or in the

scene of hand being the only skin-colored object.

For histogram-based skin color detection approach as described in [91], a set

of captured images with associated skin masks is used as the training set to train

the classifier. Using a bin size of 32 for each color channel, each of the RGB pixels

in the training set are assigned to either the 3D skin histogram Hs or the non-skin

histogram Hn. Given these histograms we can then compute the probability that

a given RGB color belongs to the skin and non-skin classes as follows

P (rgb|skin) =
s[rgb]

Ts
, (5.1)

P (rgb|¬skin) =
n[rgb]

Tn
, (5.2)

where s[rgb] is the pixel count in bin rgb of Hs, n[rgb] is the pixel count in bin

rgb of Hn, Ts and Tn are the total counts contained in Hs and Hn respectively.

At operation stage, the probability that any given rgb pixel is skin or non-skin

can be determined using Bayes rule as

P (skin|rgb) =
P (rgb|skin)P (skin)

P (rgb|skin)P (skin) + P (rgb|¬skin)P (¬skin)
, (5.3)

P (skin) =
Ts

Ts + Tn
, (5.4)

P (¬skin) = 1− P (skin), (5.5)
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where P (skin) and P (¬skin) are the prior probabilities for skin and non-skin

respectively.

Therefore, hand region can be segmented with this skin classifier to only keep

pixels with a high skin probability:

P (skin|rgb) ≥ σs, (5.6)

where σs ∈ [0, 1] is the threshold value.

However, in projector-camera scenario, diverse video contents are projected

continuously, when some skin-colored objects are projected on the background

(Region A in Fig. 5.1) or non-skin-colored objects are projected on the hand

(Region B in Fig. 5.1), the skin color based methods will be influenced severely.

Since the geometrically and radiometrically calibrated projector-camera sys-

tem can predict where the video contents are projected and how they should appear

in the image data, background subtraction [99] is adopted to segment the hand as

the set of pixels that are out of expectation on the projection surface, but suffers

from separating hand region from the hand-cast shadows (Region C in Fig. 5.1),

let alone calibration procedures and constraints of constant ambient illuminations

and fixed projection surface.

The graph-based [46, 138] approaches are able to generate good segmenta-

tions. However, the time consuming of these approaches and the requirement of

user’s interaction would weaken their advantage for the HCI application where

the speed is an important factor for realtime interaction.

Rather than monocular camera, some researchers use additional instruments,

such as infrared camera [148], stereo camera [170], depth sensor [166], to distin-

guish hand region from background, that inevitably increasing the complexity of

projector-camera system configuration.
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Figure 5.1: A sample hand image captured by projector-camera system.

In this chapter, we introduce a coarse-to-fine approach to solve the aforemen-

tioned problems. The main idea of the method is to combine contrast saliency

map with mean-shift based smoothing and segmentation by a confidence function.

Low-level contrast saliency detection enables the hand region to be highlight-

ed roughly, and mean-shift based smoothing method removes the noises induced

by projection contents without demolishing discontinuity information. Moreover,

without any pre-training and pre-calibration procedures, the robust, precise and

also rapid hand segmentation can be derived.

The rest of this chapter is organized as follows. Section 5.2 presents the pro-

posed method. Experimental results in section 5.3 demonstrates the accuracy and

efficiency of the proposed method. and Section 5.4 concludes this chapter.
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5.2 Method

5.2.1 Rough Segmentation by Contrast Saliency

Although incessant varied video contents are projected to the projection surface

and the hand operating above, it is obvious that the hand is always the most no-

ticeable object from the human vision system’s perspective. Motivated by this

biological vision cue, firstly we employed a saliency detector to derive a rough

hand region segmentation. Salient region detection as a typical low-level vision

approach has been widely studied in computer vision society. According to our

special projector-camera scenario, the saliency detector must satisfy the following

requirements:

• Emphasizing the largest salient objects

• Uniformly highlighting whole salient regions

• Disregarding artifacts arising from projection content and ambient illumi-

nation

• Accomplishing detection less than 15ms for real-time requirement

After comparing different saliency detection methods [70, 105, 62, 67, 12, 54,

184], we chose the histogram-based contrast [31], which best fulfills the afore-

mentioned criterions , to define the saliency values for image pixels.

The saliency of a pixel is defined using its color contrast to all other pixels in

the image, i.e., the saliency value of a pixel Ik in image I is defined as

S(Ik) =
N∑
i=1

D(Ik, Ii), (5.7)
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where D(Ik, Ii) is the color distance metric between pixels Ik and Ii in the HSV

color space. It is clear that pixels with the same color value have the same salien-

cy value under the definition, since the measure is oblivious to spatial relations.

Hence, rearranging Eq. 5.7 such that the terms with the same color value cj are

grouped together, we get the saliency value for each color as,

S(Ik) = S(cl) =
n∑
j=1

fjD(cl, cj), (5.8)

where cl is the color value of pixel Ik, n is the number of distinct pixel colors, and

fj is the probability of pixel color cj in image I .

In order to reduce the high dimension of 2563 true-color space, more frequent-

ly emerging 85 colors were selected by building a compact color histogram using

color quantization. At the same time, artifacts would be introduced. A smooth-

ing procedure is used to refine the saliency value for each color, which replacing

the saliency value of each color by the weighted average of the saliency value of

similar colors. Typically, m = n/4 nearest color are chosen to refine the saliency

value of color c by

S ′(c) =
1

(m− 1)T

m∑
i=1

[T −D(c, ci)]S(ci), (5.9)

where T =
∑m

i=1 D(c, ci) is the sum of distances between color c and itsm nearest

neighbors ci, and the normalization factor comes from

m∑
i=1

[T −D(c, ci)] = (m− 1)T. (5.10)
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Figure 5.2: (a) Origin image; (b) histogram contrast salient map; (c) segments
derived through mean-shift; (d) refined segmentation result.

More implementation issues are detailed in [31]. The saliency map S(x, y) of

image I (Fig. 5.2(a)) is derived as shown in Fig. 5.2(b).

5.2.2 Mean-Shift Region Smoothing

Even though the hand region has been highlighted through saliency detection, as

illustrated in Fig. 5.2(b), it is not uniformly emphasized due to the influence of

the projection content on the hand and projection surface. Hereby, it is impossible

to have precise hand segmentation through traditional threshold methods. We em-

ployed mean-shift based smoothing and segmentation approach [32] in the salient

regions, which not only eliminates the noises but also preserves the discontinu-
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ity by adaptively reduce the mount of smoothing near abrupt changes in the local

structure, i.e. boundaries.

Mean shift is a procedure for locating the maxima of a density function given

discrete date sampled from that function. It is useful for detecting the modes of

this density. This is an iterative method, and we start with an initial estimate x.

Let a kernel function K(xi − x) be given. This function determines the weight of

nearby points for re-estimation of the mean. Typically we use the Gaussian Kernel

on the distance to the current estimate,K(xi−x) = ec||xi−x||
2 . The weighted mean

of the density in the window determined by K is

m(x) =

∑
xi∈N(x) K(xi − x)xi∑
xi∈N(x) K(xi − x)

, (5.11)

where N(x) is the neighborhood of x, a set of points for which K(x) 6= 0.

One important advantage of mean shift-based segmentation is its capability to

resolve over-segment issue. The joint domain mean shift-based segmentation suc-

ceeds in over-coming the inherent limitations of methods based only on gray-level

or color clustering which typically over-segment small gradient regions, which are

common in projector illuminated area, due to the projector’s nonlinearity and the

variations of ambient illuminations.

Another important advantage of mean shift-based segmentation [32] is it-

s modularity which makes the control of segmentation output very simple, just

through three parameters: (hs, hr,M). The range parameter hr and the smallest

significant feature size M control the number of regions in the segmented piece-

wise constant model, larger values have to be used for hr and M to discard the

effect of small local variation. The spatial parameter hs determines the size of

spatial window. In our case, (hs, hr,M) is set to (7, 10, 20).

It is worth mentioning that the inherent iterative property of mean-shift based
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method usually invokes the efficiency problem. The rough salient region detection

decreases the mean-shift search space which accelerates the convergence speed

dramatically.

After mean-shift smoothing and segmentation, the image is divided into L

candidate partitions Pk, i = 1, . . . , L, as shown in Fig. 5.2(c). The contour of the

hand is preserved well.

5.2.3 Precise Segmentation by Fusing

For the sake of acquiring precise hand region segmentation, we proposed a con-

fidence function combining contrast saliency and region discontinuity to evaluate

the probability of a candidate partition to be a part of hand region. The value of

confidence function for each candidate partition is determined by several terms

listed as follows:

• The average salient value of the pixels in the partition;

• The number of the neighbor partitions and the average salient value of

neighbor partitions;

• The area of the partition;

• Whether the partition is on the image boundaries.

Hence, the value of confidence function CF (k) for partition Pk is formulated

as

CF (k) =
1

e(L−1)
[αS̄(k) + βS̄N(k) + γA(k)], (5.12)

where S̄(k) is the average saliency value of the pixels in Pk, S̄N(k) is average

saliency value of its N neighbor partitions, and A(k) is the partition’s area. The

three terms above are all scaled to [0, 1]. L is the number of image boundary to



CHAPTER 5. HAND SEGMENTATION IN PROCAMS 111

which the partition attached, when L ≥ 2, it is indicated that the partition belongs

to background that should have low confidence value. The average weights are

α, β, γ, when the number of the neighbor partitions N is equal to 1, β = 1/2, α =

γ = 1/4, which means that the confidence value is mostly depends on its surround

neighborhood, if the partition is an isolated area in hand region or background

region; Otherwise, α = 1/2, β = γ = 1/4.

If CF (k) is greater than a pre-defined threshold ∆, the partition is considered

as a part of hand region. Since not all skin pixels will be categorized correctly

at all times, a morphological closing operation is employed in order to remove

small noisy holes in the skin pixel areas. Hence, the refined binary segmentation

is derived, as shown in Fig. 5.2 (d).

5.3 Experiments

The projector-camera system we used in our experiment consisted of a Pico DLP

projector of resolution 640 × 480 and a CCD camera of resolution 648 × 488.

The system was calibrated geometrically and radiometrically by method detailed

in [29] for background subtraction method.

We collected a great diversity of images (e.g. flowers, buildings, celebrities,

animals etc.) from Google Image [2] and projected them to a desk surface. An ex-

perimental dataset of 500 images was captured under different projection contents

and different hand shapes. The ground-truth is manually annotated with the assis-

tance of GrabCut [138]. Several test images with their ground-truth are shown in

Fig. 5.3 (a) and 5.3 (b).

In order to illustrate the merits of proposed method, we conducted comparison

experiments with some related methods. The choice of these methods is motivated

by the following reasons: citation in literature (the classic approach of statistical
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color model-based (SCM) method is widely cited [91]), precision (the background

subtraction method (BkSub) has higher precision, since it is on the basis of using

pre-calibrated geometric and radiometric information to predict the background

image [99]), and recency (the sophisticated graph based method (GB) [46]).

Figure 5.3: Visual comparison. (a) original image; (b) ground-truth; (c) our
method; (d) SCM [91]; (e) BkSub [99]; (f) GB [46]. The yellow (top-left) and
green (top-right) numbers in each result image are the corresponding precision p
and recall r values, respectively.

As in [31], we adopted the F-beta score to evaluate the accuracy of segmenta-
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tion, which considers both the precision p and the recall r to computer the score:

p =
NC

NR

, (5.13)

r =
NC

NG

, (5.14)

where NC , NR, NG are the number of correct segmented pixels, all segmented

pixels and ground-truth pixels respectively. The F-beta score is the harmonic mean

of precision and recall, formulated as

Fβ = (1 + β2) · p · r
(β2 · p) + r

, (5.15)

where β is set to 0.3 to weight precision more than recall. The visual and quantita-

tive comparisons are shown in Fig. 5.3 and 5.4 respectively. Among all the meth-

ods, our method shows the highest precision, recall and Fβ values. It is evident

that the skin color-based method (SCM) gets low precision when some project-

ed objects have the color similar to skin, such as human face and yellow flower

in the case of Fig. 5.3 (d2) and 5.3 (d4). The background subtraction method

(BkSub) shows a high recall but poor precision, verifying that the shadow cast by

video projection has great influence, as shown in Fig. 5.3 (e4) and 5.3 (e6). The

graph-based method (GB) can not reserve smooth boundaries and confuse pro-

jected objects with hand region, which are the main reasons for low precision, as

illustrated in Fig. 5.3 (f4-f7).

Table 5.1 compares the average processing time taken by each method. All the

methods are implemented in C++ and executed on a desktop PC with Intel Core

2.8GHz CPU and 2GB RAM. Although our method is not the fastest one, it is

sufficiently for real-time applications.
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Table 5.1: Average processing time.

Method Ours SCM [91] BkSub [99] GB [46]
Time (ms/frame) 29.6 10.9 2.3 115.2

Figure 5.4: Precision-Recall bars for hand segmentation using different methods.
Our method shows high precision, recall and Fβ values.
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5.4 Summary

In this chapter, we described a novel coarse-to-fine approach for hand segmenta-

tion in projector-camera system, which combining the contrast saliency and region

discontinuity through a confidence function. The experimental results prove that

the proposed method can segment hand region accurately and rapidly, even the

captured images are interfered by successively projection contents and the shad-

ow cast by moving hand.



Chapter 6

Touch-Sensitive Display on

Arbitrary Planar Surface

In this chapter, we address how an HCI (Human-Computer Interface) with small

device size, large display, and touch input facility can be made possible by a mere

projector and camera. The realization is through the use of a properly embedded

structured light sensing scheme that enables a regular light-colored table surface

to serve the dual roles of both a projection screen and a touch-sensitive display

surface. A random binary pattern is employed to code structured light in pixel

accuracy, which is embedded into the regular projection display in a way that

the user perceives only regular display but not the structured pattern hidden in

the display. With the projection display on the table surface being imaged by a

camera, the observed image data, plus the known projection content, can work

together to probe the 3D world immediately above the table surface, like decid-

ing if there is a finger present and if the finger touches the table surface, and if

so at what position on the table surface the finger tip makes the contact. All the

116
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decisions hinge upon a careful calibration of the projector-camera-table surface

system, intelligent segmentation of the hand in the image data, and exploitation of

the homography mapping existing between the projector’s display panel and the

camera’s image plane. Extensive experimentation including evaluation of the dis-

play quality, touch detection accuracy, trajectory tracking accuracy, multi-touch

capability and system efficiency are shown to illustrate the feasibility of the pro-

posed realization.

6.1 Introduction

HCI (Human-Computer Interface) has been traversing from firstly punch card and

LEDs, then paper tape and CRO display, more recently mouse-plus-keyboard and

LCD panel, and now fingers and touch-sensitive display panel over the history of

development. Technologies have been ever improving, with the data-input mech-

anism growing only more natural, and the display only more vivid. Indeed for the

input-output interface of computers, scarcely anything could be more natural than

using our fingers to drag items on the ”virtual desktop” of the computer, to open

(and move and copy) files and folders, and to scroll (and enlarge) pages.

In today’s computers and other portable devices like cellular phones and P-

DAs, a large display panel is desired not only for enhancing display quality and

coping with say aged vision, it is also essential, for touch input interface, for al-

lowing finger - a rather bulky pointing device - to specify position on the ”virtual”

desktop in adequate precision. On that there is the following dilemma. A bigger

and higher-resolution display, and a bigger keyboard, are desired to incur less s-

train on eyes and fingers. Yet they also make the devices less portable. This article

attempts to solve this dilemma by exploring the possibility of replacing the display

panel and the mouse-and-keyboard by a mere projector and camera. Specifically,
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it is to enable a light-colored table surface, to which the projection is illuminated,

to serve as a touch-sensitive display panel for finger-based user input. The use of

a projector in place of an LCD panel would dissociate display size from device

size, making portability much less an issue. Touch-sensitive input facility on such

a large display would also alleviate the need of a large keyboard.

Figure 6.1: Single view of the projector illuminated table surface.

The challenge is, from a single image alone (as illustrated in Fig. 6.1) there

is generally difficulty in even distinguishing whether there is a physical contac-

t between the finger and the table surface. The facility of acquiring certain 3D

information about the illuminated workspace would be of much aid. A desirable

way of making that possible is to use no additional sensor or instrument beyond

what are already there - the projector and camera - by embedding structured codes

into the projection. This way, the projector serves two purposes: the display de-

vice, as well as the 3D acquisition channel.

This chapter aims at building the stated system, letting any tabletop surface
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to which the projection is illuminated become a touch-sensitive computer screen,

with the entire system requiring a mere video projector and camera.

6.2 Previous Works

Traditional human-computer interface is largely mouse-and-keyboard based, which

is effective but not necessarily the most natural. Tangible interfaces have been

used in some projected environments. By letting users hold some physical objects

in hand and manipulate them, more comfortability could be induced in the inter-

action. Sensetable [128] uses a projected interface for visualization and design.

Physical objects with embedded sensors can be held by users for movements to

represent the corresponding interactions. The Flatland system [120] projects onto

a whiteboard, and interactions are based on the interpretation of strokes by the

stylus on the whiteboard. More recently, Escritoire [15] uses special pens with

embedded sensors to enable interaction between a user and an illuminated table

surface. These applications are all based on manipulating tangible objects like

pens for interactions. The flexibility can however be further improved if even the

intermediate objects can be waived, and hands and fingers are directly used. Bare-

hand interface enjoys higher flexibility and more natural interaction than tangible

interfaces.

Earlier researches on barehand interfaces demanded assistance from some ad-

ditional sensors. The interfaces in DiamondTouch [38] and SmartSkin [137] both

allow hand input on a table surface, but the table has to embed a grid of wired

sensors in the first place. Another interface called Light Touch [3] also demands

the use of special hardware. It requires the use of a special projector - laser projec-

tor - not LED projector that is the nominal one in the consumable market. Laser

projector could have stronger luminance and shorter projection distance, but the
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projection quality is not in the same par, and the projection technology is gener-

ally far less mature than that of the LED projectors. It is also costly. In addition,

an infra-red sensor is needed in LightTouch to recognize finger’s contact with the

projection surface. In Skininput [64], the location of finger taps on the arm and

hand was resolved by analyzing mechanical vibrations that propagate through the

body. To collect these signals, an array of sensors worn as an armband was essen-

tial.

With the development of computer vision algorithms, some vision-based pro-

jected tabletop interfaces equipped with finger tracking began to emerge in the

last few years. Letessier [98] employed a single camera to detect and track the

2D position of the tip of bare finger on a planar display surface, but neglected

finger clicking detection. In [169, 94], the ”click” event was determined through

a delay-based scheme, which has limited usability in applications that require fast

response and multiple same-button clicks. Moreover, such click events were not

intuitive and were rather deliberate since the user had to hold his finger over the

button for a stipulated period to register a button select. Marshall [109] detect-

ed touch from the change in color of the fingernail when the finger was pressed

against a surface. Song [152] proposed a finger-based interface in a projector-

camera setting by examining if the finger and its shadow in the image were sep-

arated or merged. Wilson’s PlayAnywhere [174] adopted extra infrared illumi-

nation to enhance the contrast between the finger and non-finger regions of the

image data. This scheme however demands a capability of distinguishing the fin-

ger from its shadow robustly in the image. There is also substantial challenge in

extending the scheme to multi-touch interface. Fitriani [47] projected a button

based interface onto the surface of a soft deformable object such as a sofa pillow.

The appearance changes of the virtual button being pressed were observed by a

camera, which was considered as a signal for the touch event. The error detection
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rate was high due to complex and unpredictable deformations of the deformable

surface.

After the release of PrimeSense’s [6] depth-sensing camera-based Microsoft

Kinect [4], depth-sensing cameras have been used in various interactive surface

applications. LightSpace [176] used an array of depth-sensing cameras to track

users’s manipulations on multiple surfaces. In [175], the touch event was deter-

mined by using a per-pixel depth threshold derived from a histogram of the static

scene. Omnitouch [63] detected surface touch by counting the pixel number in

a flood filling operation in depth map. Yet depth-sensing camera is rather bulky,

and is not a standard device as compared to pico-projector and CCD camera. All

these hinders its applicability in hand-held consumer electronic products.

This chapter aims at making the following contributions in building a touch-

sensitive device:

1. Using only off-the-shelf devices

Pocket DCs and cellular phones with built-in projector and camera have

already emerged in the consumable market. They form the necessary pro-

cam foundation in building touch-sensitive interface in handheld devices.

2. Achieving 3D sensing without explicit 3D reconstruction

Detecting if a finger has indeed touched a tabletop surface and deciding at

which position of the surface the touch takes place is a 3D sensing problem.

Yet our system achieve all these without the need of going through explicit

3D reconstruction. The system exploits merely the homography mapping

(induced by the table surface) between the projector’s display panel and the

camera’s image plane. Without going through explicit depth recovery, the

complexity of the sensing task is much reduced.

3. Use of prior knowledge to enhance robustness
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By exploiting prior knowledge say about the relative geometry of the pro-

jector, camera, and projection surface, the system is endowed with better

adaptability to environmental variations.

The remainder of this chapter is structured as follows. In the next section,

prior knowledge embraced in the pro-cam system is reviewed. In Section 6.4, the

principle and strategy of embedding structured light codes in an invisible way into

regular projection is described. The essential processes of the proposed method in-

cluding hand segmentation, fingertip detection, and touch detection are detailed in

Section 6.5. In Section 6.6, the system setup and experimental results are shown.

Conclusion and possible future work are offered in Section 6.7.

6.3 Priors in Pro-Cam System

Consider a Pro-Cam system that has a projector illuminating certain display pat-

tern to a planar projection surface (e.g. a tabletop surface) that is imaged by a

camera. Once the two electronic instruments’ intrinsic parameters and extrinsic

relationship relative to the projection surface are fixed, the image data about the

projection surface are predictable from the projection content. Specifically, which

image position carries which part of the projection content that is reflected by the

projection surface is governed by a particular homography mapping [131] exist-

ing between the projector’s display panel ΠP and the camera’s image plane ΠC ,

which is induced by the projection surface ΠT ; and how close color or gray lev-

el in the image resembles that of the original projection content is governed by

a radiometric process that can be calibrated. In this work, we make use of such

priors for enhancing the efficiency and precision of the human-computer interface

we aim at building.
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6.3.1 Homography Estimation

Figure 6.2: Homographies in projector-camera-surface system.

As illustrated in Fig. 6.2, there are altogether three homographies in our sys-

tem: the homography HTC between the camera’s image plane ΠC and table sur-

face ΠT , the homography HPT between the projector’s display panel ΠP and ΠT ,

and the homography HCP between ΠC and ΠP that is induced by the table sur-

face. Among them, HPT is used for projector keystone correction, HCP is for

retrieval of the structured light code, and HCT is for deriving HPT which cannot

be directly calibrated for the reason that projector does not have visual sensing

capability.

Since homography can be expressed as a 3 × 3 matrix of arbitrary scale, i.e.,

a matrix with 8 degrees of freedoms (DOFs), it could be determined from as few

as four pixel correspondences only across the input and output planes; when more

than four correspondences are available, least-squares solution of the homography

is to be obtained.

Firstly, the homography HTC between the camera’s image plane and the ta-

ble surface is determined. On this, any rectangular object of known or standard

dimension (e.g. credit card, plastic ruler) placed on the projection surface can be
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used as the calibration object. The HTC could be estimated as

XT = HTCXC , (6.1)

where XT is any corner of the flat reference object in homogenous coordinates,

and XC is the corresponding point on the camera’s image plane.

With HCT , the homography HCP between the camera and projector could be

derived with ease. By instructing the projector to project some distinct markers

(e.g. chessboard) to the table surface, the homography could be calculated in the

same way as the above:

XC = HCPXP , (6.2)

where XC is the position of projected marker in the observed image, and XP is

the marker position on the display panel of the projector, both in homogeneous

coordinates.

Finally, the homography HTP between projector and table surface is deter-

mined as

XT = HTCXC = HTCHCPXP = HTPXP . (6.3)

6.3.2 Radiometric Prediction

Besides the geometric distortion, the photometric appearance (e.g. brightness,

RGB color etc.) of the projection surface in the image data is another prior that

has to be seized before it can be exploited in the construction of the touch in-

terface system. The appearance is generally distorted from that of the projected

pattern due to nonlinearity of the projection and imaging processes, the texture of

the projection surface, and the influence of ambient illumination. To predict the

projection appearance in the image data, radiometric calibration is necessary.
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Here we employed the photometric model described in [30], which is formu-

lated as

Cpre = VP + F, (6.4)

where Cpre and P are the RGB values of the predicted image and real image re-

spectively, the 3 × 3 matrix V is the color mixing matrix that captures all the

couplings between the projector and camera channels and their interaction with

the spectral reflectance of the projection surface, and the vector F is the contribu-

tion of the environmental lighting relative to the black level of the projector.

To measure these parameters, five images are projected and captured, first a

black image, then a red, a green, a blue and a chromatic in sequence. In addition

to the one image projection and two image captures required in homography esti-

mation, the process of deriving all the priors involves 7 projection-capture cycles,

which can be accomplished in only a few seconds. Unless the system is moved to

another working environment, or the environmental illumination is changed, the

prior knowledge is approximately constant in the operation of the touch interface

system.

In our current system, only the geometrical priors, the homographies, are em-

ployed for keystone correction and touch action recognition. So in the initializa-

tion stage, only one image projection and two image captures are required.

6.4 Embedding Codes into Video Projection

6.4.1 Imperceptible Structured Light

The basic principle of imperceptible structured light is describled in Section 4.3.1.

For detailed information, please refer to that section.
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6.4.2 Embedded Pattern Design Strategy and Statistical Anal-

ysis

Structured light coding is about equipping each pattern position a unique code that

can be distinguished in the image data. The coding can be realized over time or

space (the 2D space of the code pattern). In the touch sensitive interface we are

to build, the movement of hand and finger, the real-time operation requirement,

and the constraints of imperceptible code embedding make the temporal coding

scheme not applicable. We are thus left with the option of using spatial coding

scheme, which has the advantage that 3D determination can be achieved with at

few as one single image.

Since the resolution, optical parameters, and the position and orientation with

respect to the target object are all different between the camera and projector, it is

impossible to align the pixels on the camera’s image plane and those on the pro-

jector’s display panel for one-to-one pixel correspondence. To overcome the prob-

lem, binary spatial coding methods generally adopt some special shapes (such as

stripe, square, circle etc.) as appearance profiles, which could be easily segment-

ed in the decoding stage. A shortcoming of this design scheme is that the density

of the effective feature points is sparse, and in our case is generally too sparse to

ensure that the depth information of the fingertip can always be derived no matter

where it is located. So here we proposed a new binary encoding scheme that has

pixel precision.

Almost all the spatial coding methods were based on perfect map or M-array

theory for its unique window property. MacWilliams [106] and Etzion [44] pro-

posed methods to construct M-array mathematically. By folding pseudorandom

array, the methods are effective and efficient to generate M-arrays. However, they

could only generate the ones of n1 × n2 size with the k1 × k2 window property,
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where n = 2k1k2 − 1, n1 = 2k1 − 1, n2 = n/n1. In our case, the resolution of

pico projector is 640 × 480, in order to make sure that every pixel has a unique

binary code, 2k ≥ 640× 480 , so that k ≥ ln(640× 480)/ ln 2 ≥ 18.23. Thus the

windows size should be set as 5 × 5. Therefore, the dimension of perfect map is

n1 = 2k1 − 1 = 31, n2 = n/n1 = 1082401. However, this result is not applicable

for our projector.

Some researchers employed other practical methods to generate the perfect

map. Morano [115] proposed an algorithm for constructing an M-array, fixing the

length of the alphabet, the window property size, the dimensions of the array and

the Hamming distance between every window. The algorithm used to generate an

array with fixed properties is based on a brute force approach. For our case, when

constructing a binary M-array with window property of 5× 5, the following steps

are taken: first, a sub-array of 5 × 5 is chosen randomly and is placed in the top-

left corner of the M-array that is being built. Then consecutive random columns

of 5× 1 are added to the right of this initial sub-array, maintaining the integrity of

the window property of the array. Afterwards, rows of 1×5 are added beneath the

initial sub-array in a similar way. Then, both horizontal and vertical processes are

repeated by incrementing the starting coordinates by one, until the whole array

is filled. When filling the array, the code uniqueness of the new added point will

be checked. If not satisfied, the array is cleared and the algorithm starts again.

Since the computational complexity is extremely high, the author only generated

an array of 45×45. Besides the three aforementioned methods, some other typical

methods in binary spatial coding are listed in Table 6.1. In the literature there is

not an effective method to generate a binary array of 640 × 480 size that has

the required unique window property. For this reason, in this work we seek to

generate the pattern array by statistical analysis.

In our system, we use a pico projector that is of 640×480 resolution. To make
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Table 6.1: Summary of typical spatial coding methods

Method Array Size Win. Size Alph. Length
Morita [117] 24× 24 3× 4 2
Kiyasu [93] 18× 18 4× 2 2
Salvi [146] 29× 29 3× 3 3
Spoelder [59] 65× 63 2× 3 2
Albitar [13] 27× 29 3× 3 3
Desjardins [39] 53× 38 3× 3 3
Chen [28] 82× 82 3× 3 7

sure that every pixel has a unique binary code, it is required that 2k ≥ 640× 480,

which means k ≥ ln(640 × 480) ≥ ln 2 ≥ 18.23. In other words, the codeword

at each pattern position must be at least 18 bits long. In accordance with the

resolution of pico projector, a matrix of 640 × 480 is to be filled with pseudo-

random generated sequence consisting of 0 and 1 in standard uniform distribution.

If an m×n window is selected for coding each pixel, and if the window is picked

to be the one with the pixel as its bottom-right corner, totally (640 − m + 1) ×

(480− n+ 1) pixels will be coded by a (mn)-bit binary string. The codeword of

every effective pixel can be derived and some statistical analysis can be employed

to evaluate the code uniqueness. For our pico projector, random generation of

6 × 6 arrays are generally sufficient to equip each pixel with a unique window

label.

In our experimentation, after conducting 100 trials of pattern generation, the

array with the largest average inter-codeword Hamming distance (H̄ = 4.524)

was derived. The large inter-codeword Hamming distance corresponds to good

noise-tolerance of the codewords on the imaging side. We chose this array (part

of which is shown in Fig. 6.3) to embed into normal video projection.

In the decoding stage, the correspondences between the camera’s image plane

and the projector’s display panel were established by the homography induced by
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Figure 6.3: Magnified part of the binary pattern (dotted line grid is added for
illustration)

the projection surface. This will be discussed in the following section in depth.

6.5 Touch Detection using Homography and Embed-

ded Code

For the purpose of locating the position of the fingertip and determining whether

a physical touch takes place, some preliminary processes need be employed, such

as hand segmentation and fingertip detection. In this section we discuss these

processes in the circumstance of our particular pro-cam system.
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6.5.1 Hand Segmentation

By making use of the hand segmentation method proposed in Chapter , the hand

operating above the projection area is segmented. After filling up the isolated

small cavities by the use of the morphological ”close” operation, the largest con-

nected subregion is regarded as the hand, as shown in Fig. 6.4(a).

(a) Binary hand image (b) Hand contour

(c) Fingertip candidates (d) Detected fingertips

Figure 6.4: Hand segmentation and fingertip detection.

6.5.2 Fingertip Detection

Fingertip detection is conducted on the basis of segmented binary hand image.

The hand contour is retrieved from the binary image using the algorithm detailed
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in [155], as illustrated in Fig. 6.4(b). The extracted contour serves to offer fin-

gertip candidates through a simple arc line analysis. Let T(x), x = 1, . . . , N be

the various points of the hand silhouette in clockwise order, where N is the total

number of contour points. Whether a particular contour point T (k) is a finger-

tip candidate is examined by the curvature of the contour there. We express the

curvature approximately as the angle θ,

θ = arccos
v1 · v2

‖v1‖‖v2‖
, (6.5)

v1 = T(k)−T(k − t), (6.6)

v2 = T(k)−T(k + t), (6.7)

where T(k − t) and T(k + t) are contour points in the vicinity of T(k), each on

a different side of T(k) at an interval of t points from it.

If θ < π
2

and |v1,v2| > 0, T(k) is regarded as a fingertip candidate. The sec-

ond conditional term as a determinant is employed to distinguish fingertip peaks

from valleys between two fingers. Some fingertip candidates, that indicated by

blue points in Fig. 6.4(c) are determined. Finally, the candidates that are con-

secutive or nearly consecutive in the hand silhouette are clustered into the same

group, and in each group only the candidate in the median position is confirmed

as a fingertip (yellow points in Fig. 6.4(d)).

6.5.3 Touch Detection Through Homography

With the fingertips detected, the next task is to examine if any of the fingertips

touches the display surface. In the coding design, we ensure that every pixel in

the projected pattern is coded by a 36-bit binary codeword. However, as discussed

above, it is impracticable to align the pixels on the camera’s image plane and those
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on the projector’s display panel for one-to-one pixel correspondence between the

two. Instead, we make use of the homography between the image plane and dis-

play panel that is induced by the table surface. Below we use the single-touch case

as an example to illustrate how a mere touch is detected. Multi-touch is a simple

extension of the single-touch.

Figure 6.5: Touch detection via homography.

As illustrated in Fig. 6.5, suppose we have a finger touching the projection

surface. The fingertip FC lies on the plane of the projection surface, and thus

would satisfy the associated homography. More precisely, a position FP on the

display panel of the projector ΠP can be derived in homogenous coordinates as

F̃P = HPCF̃C . The codeword at FP is then determined by the code values of

the pixels FPi
in a 6 × 6 window that has FP as its bottom-right corner. In other

words, the binary codeword BCP at FP is regarded as

BCP =
35∑
i=0

2i · IP (FPi
), (6.8)
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where FPi
∈ {(XPi

, YPi
)|XP − 5 ≤ XPi

≤ XP , YP − 5 ≤ YPi
≤ YP}.

On the other hand, the binary code embedded in the image data at point FC

can be observed as

BCS =
35∑
i=0

2i · IS(FSi
), (6.9)

F̃Si
= H−1

PCF̃Pi
, (6.10)

where F̃Si
and F̃Pi

are homogenous representations.

If the Hamming distance betweenBCP andBCS is less than a preset threshold

λH , FP and FS are considered as sharing the same code, meaning that the touch

has taken place. Otherwise, the finger is regarded as not having physical contact

with the table surface. The threshold λH should be adjusted according to the

ambient illuminations for suitable noise-tolerance.

The above allows touch to be determined without going through explicit 3D

reconstruction, and can operate in real-time.

6.5.4 From Resistive Touching to Capacitive Touching

In the last section, we have emulated an ”resistive” touch operation, which re-

quires touching with a certain pressure on the projection surface. Below we show

how to enhance the touch sensitivity and move the interface from a ”resistive

touch” to a ”capacitive touch”.

In fact we can generate from the table surface-induced homography to another

homography that is induced by a plane parallel to but slightly elevated from the

table surface, as indicated by any of the shown dashed lines in Fig. 6.6). The

dash lines correspond to different levels of touch sensitivity demanded. If the

homography so generated is satisfied by any detected finger tip in the image data,
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a touch action can regarded as confirmed.

Figure 6.6: Homography transfer across parallel planes.

As shown in Fig. 6.6, given a plane Π, we can define a coordinate frame

W : X − Y − Z local to it, with X , Y axes within the plane Π and Z-axis

perpendicular to Π. Suppose the plane Π is real table surface, and we know the

homography H̄Π from Π to the camera’s image plane, that is induced by Π itself.

Then let the pre-calibrated projection matrix of the camera be

P ∼= [p1, p2, p3, p4] ∼= K[r1Π, r2Π, r3Π, tΠ], (6.11)

where K is the 3× 3 matrix containing all the intrinsic parameters of the camera.

Notice that the homography H̄Π that owns the property:

m̃ ∼= H̄Π[X, Y, 1]T , (6.12)

is related to the camera projection matrix by H̄Π
∼= [p1, p2, p4] ∼= K[r1Π, r2Π, tΠ].

Suppose we have a plane Πdi parallel to but elevated from Π by a perpendicular

distance di. For the 3D position (X, Y, di) on Πdi , which is elevated from point



CHAPTER 6. SURFACE TOUCH-SENSITIVE DISPLAY 135

(X, Y, 0) on Π perpendicularly by distance di, the image projection m̃′ can be

expressed as

m̃′ ∼= K[RΠ, tΠ][X, Y, di, 1]T

∼= K(Xr1Π + Y r2Π + dir3Π + tΠ)

∼= K([r1Π, r2Π, tΠ] + di[0, 0, r3Π])[X, Y, 1]T

∼= (H̄Π + di[0, 0, Kr3Π])[X, Y, 1]T , (6.13)

By substituting Eq. 6.12 into Eq. 6.13, we have

m̃′ ∼= (I + di[0, 0, p3]H̄−1
Π )m̃ ∼= HCdim̃. (6.14)

Hence, through the original homography and the third column of the camera pro-

jection matrix, we can derive the homography HCdi between the camera’s image

plane and the elevated plane. In a similar way, the homographyHPdi between pro-

jector’s display panel and the elevated plane can also be expressed. Finally, the

new homography between the projector’s display panel and the camera’s image

plane, that is induced by elevated plane, is obtained as HCPdi = HCdiHCPH
−1
Pdi

,

which can be adopted for more sensitive touch sensing on the table surface.

6.6 Experiments

In order to assess the feasibility of the described system for barehand human-

computer interface, we conducted experiments to evaluate display quality, touch

detection accuracy, trajectory tracking accuracy, multi-touch capability, and sys-

tem efficiency respectively.
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Figure 6.7: System prototype.

The projector-camera system we used in our experiment consisted of a DLP

projector with a native resolution of 640× 480 and an interface for firmware con-

figuration (TI DLP Pico Projector Development Kit 2), plus a camera of 648×488

resolution at 120fps (Point Grey FL3-FW-03S1C camera with Myutron FV0622

f6mm lens), both being off-the-shelf equipments. The system was configured for

a working distance of about 500mm, making a 15-inch projection area. If short-

throw projector and short focus lens are employed, a bigger projection area could

be acquired with shorter distance.

We first mounted the projector and a camera rigidly and then fixed them on

a tripod standing on a table surface, as shown in Fig. 6.7(a). The projector and

camera were connected to a desktop computer through HDMI and IEEE1394 in-

terfaces respectively, and the hardware trigger signal of the camera was connected

to the sync. output of the projector for synchronization between them, which

are illustrated in Fig. 6.7(b). Moreover, the projector-camera system was pre-

calibrated using the method detailed in [154].
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6.6.1 System Initialization

For the camera-projector-plane system, projection keystone correction is accom-

plished by the homography between projector projection plane and table surface;

the finger touch action is determined through the homography between camera

image plane and projector projection plane embraced by the planar table surface.

Therefore, before the system operation stage, the initialization step to estimate the

camera-plane and camera-projector homoraphies is necessary.

Camera-Projector Homography Estimation

To estimate the camera-projector homography, one projection-capture cycle is

needed. As shown in Fig. 6.8(a), a chessboard pattern was projected onto the

table surface, the chessboard corners CPi(i = 0, . . . , N) indicated by the blue

circle were considered as the feature points, the coordinate of these points were

known during the chessboard generation. After the camera’s capture, an image of

the table surface illuminated by the chessboard was acquired. Then through the

automatic corner detection in the image data, the corresponding points CCi(i =

0, . . . , N) were found, as indicated by the white dots in Fig. 6.8(a). Finally, by

use of CPi ∼ CCi correspondences, the camera-projector homography HCP can

be calculated by least-square method.

Camera-Plane Homography Estimation

Since the lack of sensing capability of projector, it is impossible to estimate the

projector-plane homography directly. Here, we have already obtained camera-

projector homography, through estimating camera-plane homography, the projector-

plane homography will be derived. For the sake of estimating camera-plane ho-

mography, an planar object with standard dimension is required. As illustrated in
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(a) Projected chessboard

(b) Captured image

Figure 6.8: Images for camera-projector homography estimation.
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Fig. 6.9(a), a credit card was employed as calibration object, the black magnetic

stripe on it is a rectangle with standard dimension of 85.5mm×12.5mm(W×H).

The top-left corner was chosen as the origin of the coordinate system of the card,

so the coordinates of the four corners O, Px, Py and Pxy were (0, 0), (85.5, 0),

(0, 12.5) and (85.5, 12.5) respectively. The credit card was put on the table sur-

face, then an image was captured as shown in Fig. 6.9(b). After binary segmen-

tation and corner detection, four corresponding points Ci, i = 1, . . . , 4 were de-

tected in the image, as indicated by yellow cross in Fig. 6.9(b). Then through the

four correspondences (C1 ∼ O, C2 ∼ Px, C3 ∼ Py, C4 ∼ Pxy), the camera-plane

homograpy was confirmed.

So in the initialization step, only one image was projected and two images

were captured. With the addition of calculation time, the initialization can be

accomplished within 20 seconds.

6.6.2 Display Quality Evaluation

Embedded code imperceptibility and user satisfaction is of the first priority in the

system design. We conducted user studies based on a questionnaire. Twenty per-

sons were invited to participate in this experiment. 500 images were collected

from Google Image randomly, in which binary pattern was embedded with dif-

ferent intensities. The viewers were seated in front of a desk surface where the

video contents were projected, and asked to comment on the quality of the image.

The questions asked were simplified from the questionnaire in [61], focusing on

the feeling of flickering, the recognition of image deterioration, and the overall

satisfaction for projection quality. The score for each question ranged from 0 to

10. The questionnaire is enumerated as follows:

1. To what extent did you feel the flickering in the projected images (0-10)?
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(a) Credit card

(b) Captured image

Figure 6.9: Images for camera-plane homography estimation.
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2. To what extent did you recognize the image deterioration (such as discolor-

ment and ghost image) (0-10)?

3. To what extent were you satisfied with the quality of projected images (0-

10)?

The average scores of the subjective evaluation are illustrated in Fig. 6.10.

When the embedded intensity was small, i.e., ∆ = 5, 10, the viewer could rarely

notice the embedded codes and were satisfied with the projection quality. With

the increase of the embedded intensity, the viewers’ sense of flickering and im-

age degradation became stronger. When ∆ = 25, almost every viewer was not

satisfied with the projection quality.

In practice, because it was difficult to retrieve weakly embedded codes with

the standard commercial cameras, we chose ∆ = 10 in our configuration, striking

a compromise between user satisfaction and code imperceptibility.

6.6.3 Touch Accuracy Evaluation

Similar to [63], we specially designed an image, in which 35 circles were dis-

tributed uniformly. As shown in Fig. 6.11(a), the center of each circle, indicated

by the cross symbol, was known. The testing pattern was projected to three table

surfaces with different textures as shown in Fig. 6.11(b-d). In each round, the

users clicked the virtual projected circles one by one as accurately as they could.

If a touch contact was detected, a yellow circle was placed around the clicked cir-

cle (Fig. 6.11b & d). Five persons were invited to participate in the experiment,

each of them conducted 6 rounds (on the three surfaces and under two ambient

illuminations, and the two different environmental illuminations are shown in Fig.

6.12). Totally, 1050 touch trials were produced.
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Figure 6.10: User studies results for code imperceptibility.



CHAPTER 6. SURFACE TOUCH-SENSITIVE DISPLAY 143

The precision of touch position localization is evaluated by the average dis-

tance between ground-truth and the detected position, which is formulated as

ε =
1

Nt

Nt∑
i=1

√
(Xdi −Xgi)

2 + (Ydi − Ygi)2, (6.15)

where Nt is the total number of correctly detected touch contacts, and (Xdi , Ydi)

and (Xgi , Ygi) are the detected position and ground-truth respectively.

The accuracy of touch detection is estimated by false reject rate (FRR), the

probability that the system fails to detect an actual touch action, and false accep-

t rate (FAR), the probability that the system incorrectly confirms a non-contact

action as a touch contact. FRR and FAR are formulated as

FRR =
Nmd

N
, (6.16)

FAR =
Nfd

N
, (6.17)

where N is the total trial number, Nmd and Nfd are the number of missed detec-

tions and false detections respectively.

The detailed quantitative testing results, listed in Table 6.2, illustrate the per-

formance and robustness of the described system against different projection sur-

faces and different surrounding illuminations. Here, we compared our method

with some recent depth-camera sensing based methods. In [175], the informal ob-

served spatial error of finger detection on planar surface was between 3-6 pixels,

but the finger click detection error was not mentioned. As for OmniTouch [63],

the FRR and FAR of finger click detection on four different surfaces were report-

ed as 0.8% and 3.3%. Even though the evaluation data-sets, the sensing systems

and working environments were not all exactly identical, the comparison results
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Table 6.2: The quantitative experiment results.

Surface
Illumination

Dark Normal
ε(px) FRR/FAR(%) ε(px) FRR/FAR(%)

Gray 2.98 1.12/0.45 3.05 1.32/0.48
Yellow 3.04 1.23/0.57 3.12 1.54/0.61
Artifact 3.12 1.77/0.67 3.20 1.76/0.63

show that the described system has at least comparable performance even under

less complicated devices. Some frames from one trial are shown in Fig. 6.13,

camera view, third person view and fingertip trajectory are also demonstrated in

each sub-figure.

Figure 6.11: (a)Image projected for ground-truth collection, (b) gray surface, (c)
yellow surface, (d) surface with artifacts
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(a) Normal (b) Dark

Figure 6.12: Two different environmental illuminations.

6.6.4 Trajectory Tracking Evaluation

Besides click, finger dragging is also an important action in typical touch screen

operation. Here we conducted an evaluation for trajectory tracking when drag-

ging fingers on the projection surface. As shown in Fig. 6.14(a), three different

geometrical shapes (square, right triangle and circle) were projected onto the table

surface. Five users were asked to drag their index finger along three boundaries

one by one, the average trajectories indicated by blue curves (as shown in Fig.

6.14(b)) almost coincided with the ground-truth in grey. This experiment certifies

our method can track the trajectory of dragged finger precisely.

6.6.5 Multiple-Touch Evaluation

Multi-touch refers to a touch sensing surface’s ability to recognize the presence

of two or more points of contact with the surface. This plural-point awareness

is often used to implement advanced functionality such as pinch to zoom or acti-

vating predefined programs. In the aforementioned experiments, our method has

been proved as an accurate and effective method for tracking the status of a sin-

gle finger. It is straightforward to extend single-touch to multi-touch. Some key
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(a) Frame 1019 (b) Frame 1032

(c) Frame 1093 (d) Frame 1192

(e) Frame 1198 (f) Frame 1224

Figure 6.13: Some frames from one trial for touch accuracy evaluation.
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Figure 6.14: (a) Image projected for ground-truth collection, (b) fingertip dragging
trajectories.

frames from one trial are demonstrated in Fig. 6.15, revealing the feasibility in

multi-touch case.

6.6.6 Efficiency Evaluation

For human-computer interface, real-time performance is of great importance. Hence

we implemented the proposed system in C++ using the Intel OpenCV [5] Li-

brary to evaluate its processing time. Through multi-thread programming, the

projection-capture process and calculation process were executed in two different

threads respectively, each of which was able to run in real time in a desktop com-

puter with Intel Core2 Duo 2.53GHz CPU. Table 6.3 shows the average processing

times for hand segmentation in 2D image, fingertip localization, and touch detec-

tion. The total time consumption is less than 20ms, indicating the system meets

the requirement of real-time application.

For the potential virtual keyboard application, if two hands with 10 fingers ap-

pear in the camera view, the processing time for hand segmentation and fingertip

localization is almost the same as that in single hand case, since these two sub-

routines are global operations. To detect single finger touch action, the average
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(a) No touch (Frame 10641) (b) One finger (Frame 10760)

(c) Two fingers (Frame 10785) (d) Three fingers (Frame 10809)

(e) Five fingers (Frame 10813) (f) Two fingers dragging(Frame 11601)

Figure 6.15: Some frames from one trial for multi-touch capability evaluation.
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Table 6.3: Average processing time.

Subroutine Hand Seg. FTip Loc. Touch Det. Total
Time (ms/frame) 14.63 1.32 1.74 17.69

processing time is 1.74ms, so it will spend about 17.4ms on ten fingers touch

detection in sequential execution. It will be faster through parallel processing.

Eventually, the whole procedure can be accomplished within 30ms, verifying our

methodology is applicable in virtual keyboard application.

6.7 Summary

This chapter explores the possibility of replacing the display panel and the mouse-

and-keyboard by a mere projector and camera. Specifically, it is to enable a light-

colored table surface, to which the projection is illuminated, to serve as a touch-

sensitive display panel for finger-based user input.

The described work lays down the setup and design of the pro-cam system for

touch-sensitive interface. Single-touch, touch dragging tracking and multi-touch

facilities are also constructed and thoroughly experimented with. All these form

the basis of a more complete touch interface system. Future work includes more

thorough experimentation with multi-hand interface using the system. Based up-

on the touch detection facility, advanced touch gestures (e.g. double clicking,

scrolling, zoom-in, zoom-out) and even typing recognition on the described plat-

form will also be studied.



Chapter 7

Conclusion and Future Work

This chapter presents the conclusion and some perspectives opened by this work.

The contributions of the thesis are described firstly. The publications related to

this work is then listed. Finally, future possible works beyond this research are

discussed.

7.1 Conclusion and Contributions

This thesis has focused on developing a projector-camera system that can provide

a platform for the user interacting with computer in a natural way. Three key

issues, including 3D information interpretation, display and sensing, and human

action recognition have been involved in this work. All the contributions in this

work can be enumerated as follows.

The first contribution in this work is to determining the 6-DOF head pose by

the use of an imperceptible structured light system to demonstrate the feasibility

of combining 2D texture information with 3D depth information. The method is

150
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able to track accurate 3D positions of salient facial landmarks without the need of

going through any training process. Firstly, through elaborate pattern projection

strategy and camera-projector synchronization, a pattern-illuminated image and

the corresponding scene-texture image are captured under illumination that ap-

pears as white light yet embeds coded patterns. Then, in the point cloud generated

by structured light sensing, the facial feature points in the scene-texture image

localized by AAM will have their 3D positions interpolated. Correspondences

between such facial features in 3D, with those associated with the previous or ref-

erence image frame, can then be constructed. Finally, the head orientation and

translation are estimated by SVD of a correlation matrix that is generated from

such point pairs in 3D. Experiment results show that mean absolute estimation

errors of our method are 2.02◦, 1.18◦ and 0.76◦, in yaw, pitch and roll directions,

respectively.

The second contribution is that we have proposed a novel method of embed-

ding imperceptible structured codes into arbitrarily intended projection. Through

precise projector-camera synchronization, structured codes consisting of three

primitive shapes are embedded into the projection, in a way that is impercepti-

ble to viewers but extractable from the ”difference image” between successive

images captured by a camera. To make the decoding process more robust against

noise, we do not extract the codes by region segmentation in the image domain.

Instead we employ specially trained classifiers to detect and identify the codes.

To enhance the error tolerance further, specially designed primitive shapes and

large Hamming distance are adopted in the spatial coding. Even with some bit-

s of the codewords missed or wrongly coded, the correct correspondence could

still be derived correctly. Through the proposed method, more than 90% of the

embedded feature points could their correspondences found correctly. Sensitivity

analysis proved that our method was still effective even through the scenarios of



CHAPTER 7. CONCLUSION AND FUTURE WORK 152

training stage and operation stage were different. Some application cases were

also demonstrated.

The third contribution is that we have introduced a coarse-to-fine approach to

solve the segmentation problem in projector-camera system. The main idea of the

method is to combine contrast saliency map with mean-shift based smoothing and

segmentation by a confidence function. Low-level contrast saliency detection en-

ables the hand region to be highlighted roughly, and mean-shift based smoothing

method removes the noises induced by projection contents without demolishing

discontinuity information. Moreover, without any pre-training and pre-calibration

procedures, the robust, precise and also rapid hand segmentation can be derived.

Extensive experiments showed that our method archived the highest precision and

recall rate among previous methods.

The last contribution is that we explored the possibility of replacing the dis-

play panel and the mouse-and-keyboard by a mere projector and camera. Specif-

ically, it is to enable a light-colored table surface, to which the projection is il-

luminated, to serve as a touch-sensitive display panel for finger-based user input.

Compared with the recent depth-camera sensing based methods, the experimental

results showed that the described system has comparable performance even under

less complicated devices.

7.2 Related Publications

[1] J. Dai and R. Chung, Making Any Planar Surface into a Touch-sensitive Dis-

play by a Mere Projector and Camera, In Proc. of 25th IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR’12) - Workshop (PROCAMS’12),

pages 35-42, 2012.

[2] J. Dai and R. Chung, On Making Projector both a Display Device and a
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3D Sensor, In Proc. of The 8th International Symposium on Visual Computing

(ISVC’12), pages 654-664, 2012.

[3] J. Dai and R. Chung, Combining Contrast Saliency and Region Discontinuity

for Precise Hand Segmentation in Projector-Camera System, To Appear in Proc.

of The 21st International Conference on Pattern Recognition (ICPR’12), Novem-

ber 2012.

[4] J. Dai and R. Chung, Embedding Imperceptible Codes into Video Projection

and Applications in Robotics, To Appear in Proc. of IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS’12), October 2012.

[5] J. Dai and R. Chung, Head Pose Estimation by Imperceptible Structured Light

Sensing, In Proc. of IEEE International Conference on Robotics and Automation

(ICRA’11), pages 1646-1651, 2011.

[6] J. Dai and R. Chung, Sensitivity Evaluation of Embedded Code Detection in

Imperceptible Structured Light Sensing, Submitted to IEEE Workshop on Robot

Vision (WoRV’13), January 2013.

[7] J. Dai and R. Chung, Embedding Invisible Codes into Regular Video Projec-

tion: Principle, Evaluation and Applications, Submitted to IEEE Transactions on

Circuits and Systems for Video Technology.

[8] J. Dai and R. Chung, Touch-sensitive Display on Arbitrary Planar Surface by a

mere Projector and Camera, Prepared to submit to IEEE Transactions on Pattern

Analysis and Machine Intelligence.

7.3 Future Work

The extension of this work lies on four directions: (1) Relaxation the two assump-

tions in head pose estimation method; and (2) increasing the signal-to-noise ratio

of substraction image and the density of the embedded patterns in ISL sensing;
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and (3) more elaborate fusing confidence function to refine hand segmentation

accuracy; and (4) the extension to multi-hand supporting and advanced touch ges-

tures recognition in the touch-sensitive interface.

There are two assumptions made in head pose estimation approach. One is

that the position of the human head is constant between the captures of the pattern-

illuminated image and the subsequent scene-texture image. The other is that the

human head is modeled as a rigid object. The former one will be violated when

user has quick motion, while the latter will be destroyed when there are extreme

expression variation. The future work will lie on introduction of motion compen-

sation between the pattern-illuminated image and the subsequent scene-texture

image, and of the use of 3D deformable model that embraces facial expression

variation, so that the two assumptions could be relaxed.

In the current ISL system, the image capture interval is 10ms. In sensing

object that moves fast, the substantial displacement between successive images

will result in blur or destruction of the embedded codes in the difference image.

Some compensation methods need be in place to deal with the problem. And some

image enhancement technologies should be studied to increase the low signal-to-

noise ratio of subtraction image. In addition, the embedded code could be denser

for more precise 3D sensing.

For the touch-sensitive interface, single-touch, touch dragging tracking and

multi-touch facilities have been already constructed and thoroughly experimented

with. All these form the basis of a more complete touch interface system. Future

work includes more thorough experimentation with multi-hand interface using

the system. Based upon the touch detection facility, advanced touch gestures (e.g.

double clicking, scrolling, zoom-in, zoom-out) and even typing recognition on the

described platform will also be studied.
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