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Abstract— We describe a method of estimating head pose
in space by imperceptible structured light sensing. Firstly,
through elaborate pattern projection strategy and camera-
projector synchronization, pattern-illuminated images of the
subject and the corresponding scene-texture image are captured
under imperceptible patterned illumination. 3D positions of the
key facial feature points are then derived by a combined use
of (1) the 2D facial feature points in the scene-texture image
that are localized by AAM, and (2) the point cloud generated
by structured light sensing. Eventually, the head orientation
and translation are estimated by SVD of a correlation matrix
that is generated from the 3D corresponding feature point pairs
over the various image frames. Extensive experiments show that
the proposed method is effective, accurate, and fast in 6-DOF
head pose estimation, making it suitable for use in real-time
applications.

I. INTRODUCTION

Head pose estimation has continuously been an active

research subject for its usefulness in a variety of applications.

In human-computer interaction, head pose is an important

cue for computer or robot to infer the intention of human [1].

For some face-related applications like face alignment, face

recognition, and facial expression recognition, estimating

the pose of the face is considered as a precondition or

preprocessing step [2]. For driver-assistance systems, head

pose estimation is essential for inferring the driver’s focus

of attention [3].

In the context of computer vision, head pose estimation

is most commonly interpreted as the ability to infer the ori-

entation and translation of a person’s head from image data

with respect to a camera. If the human head is regarded as a

disembodied rigid object, the human head motion is limited

to six degrees of freedom (DOFs), three for orientation that is

characterized by pitch, roll, and yaw, and three for translation

along say three orthogonal directions in space.

The adoption of structured light illumination has been

proven to be an effective and accurate visual means for 3D

reconstruction [4]. Structured light system (SLS) consists of

a projector that projects controlled patterns to the target ob-

ject, and a camera capturing images of the illuminated object.

Once correspondences between positions on the projector’s

pattern panel and positions on the camera’s image plane

are established through the use of some coding strategies

on the illuminated patterns, simple triangulation over the

light rays from the projector and the corresponding light

rays to the camera would recover 3D information about the

target object. Recently, the availability of pico projectors with
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physical size of only 4×2×1 inches has further extended the

application domain of SLSs. Nikon Corp. has even integrated

an ultra-small built-in projector into its latest digital camera

COOLPIX S1000pj, making it possible to implement SLS in

even hand-held consumer electronic products.

However, light projection device’s intrinsic characteristics

could lead to disadvantages in specific circumstances: it

could lead to loss or corruption of colorimetrical and textual

information of the lighted surfaces, to inconsistency of op-

tical flow, and even to offensive, possibly hazardous aspects

of illumination (e.g., direct LASER illumination to human

face for face measurement etc. could arouse eye discomfort

and even injury).

To benefit from the merits of SLS while avoiding the

drawbacks, researchers have designed SLSs in the non-

visible spectrum [5] or in an imperceptible way. Three major

approaches are InfraRed Structured Light (IRSL), Filtered

Structured Light (FSL), and Imperceptible Structured Light

(ISL). In particular, ISL is easy to implement, since it

requires similar equipments as those of regular projection:

a digital projector, and cameras. The light source projects

a light pattern (which is related to structure coding of

the illumination) followed by its complement (the inverse

pattern) onto the scene, at high frequency so as to hide

the coding pattern from humans and make the illumination

appear uncoded and uniform. The first camera is synchro-

nized with the projection of the first illuminated pattern (the

coding pattern) to achieve 3D reconstruction, just like in

the traditional structured light methods; the second one has

long integration time and observes the scene under uniform-

like illumination to capture a gray-level or colored image

representing scene texture.

This article describes a method of determining the 6-

DOF head pose by the use of an imperceptible structured

light system. The method is able to track accurate 3D

positions of salient facial landmarks without the need of

going through any training process. Firstly, through elaborate

pattern projection strategy and camera-projector synchro-

nization, a pattern-illuminated image and the corresponding

scene-texture image are captured under illumination that

appears as white light yet embeds coding patterns. Sub-

sequently, in the point cloud generated by structured light

sensing, the facial feature points in the scene-texture image

localized by AAM will have their 3D positions interpolated.

Correspondences between such facial features in 3D, with

those associated with the previous or reference image frame,

can then be constructed. Finally, the head orientation and

translation are estimated by SVD of a correlation matrix that

is generated from such point pairs in 3D.
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The remainder of this article is structured as follows.

In Section II, related works on head pose estimation and

imperceptible structured light sensing are briefly reviewed.

The essential processes of the proposed method including

pattern projection strategy, facial landmark localization, and

6-DOF head pose estimation are described in Section III. In

Section IV, the system setup and experimental results are

shown. Conclusion and possible future work are offered in

Section V.

II. RELATED WORK

A. Head Pose Estimation

Due to the immense potential applications of head pose

estimation, a variety of approaches to the problem have

been proposed in the past decade. A comprehensive literature

review has been recently carried out by Murphy-Chutorian

and Trivedi [6]. Below we outline a few key works related

to our work.

Compared to the use of 2D texture information (such

as points, edges etc.) in the image data, the use of 3D

information and 3D face models is inherently more direct and

accurate for pose or motion estimation in 3D. Morency et al.

used depth and intensity view-based eigenspaces to build a

prior model from the first image frame that is then robustly

tracked [7]. Jimenez et al. built a 3D face model using points

chosen by SMAT in the first image frame [8]. Through stereo

correspondence of the two cameras, the 3D coordinates of

these points can be extracted, and the points are tracked in

the subsequent frames and 3D pose are calculated at each

frame by RANSAC and POSIT.

Some methods have been presented that work on range-

scan data. Based on a novel shape signature to identify noses

in range images, Breitenstein et al. generated candidates for

the nose positions, and inferred and evaluated many pose

hypotheses [9]. The pose is estimated using an error function

that is employed to compare the input range image with the

pre-computed pose image of an average face model.

In the above methods, though 3D acquisition systems are

there to provide accurate and dense data, the vast amount of

data needed also demands the use of powerful parallel pro-

cessors (GPU), or else there could be difficulty in processing

the data in real time.

Besides the above, hybrid methods that combine one or

more methods have been studied and they showed good

performance in pose estimation. Murphy-Chutorian et al.

had a system based on localized gradient orientation his-

tograms, that are integrated with support vector machines for

regression [3]. However, some training processes on some

previously prepared training sets are needed in the learning-

based method, which could be tedious and time consuming.

In this work, we derive the 3D positions of key facial

feature points from a sparse point cloud generated from an

ISL system. The system requires no training process. The low

computational complexity of the system also makes real-time

performance possible.

B. Imperceptible Structured Light

A first proof-of-concept system that embeds invisible

structured light patterns into DLP (Digital Light Processing)

projections was introduced in the ”Office of the Future”

project [10]. In the work, binary codes are embedded by

projecting coded images and their complements in tem-

porally alternating manner. Provided that the frequency of

projection reaches the flicker fusion threshold (≥ 75Hz), the

coding pattern and the inverse pattern are visually integrated

over time in human perception, and the illumination has the

appearance of a flat field (”white” light) to humans. However,

embedding structured light into DLP projections was made

possible only with extensive modifications of the projection

hardware and firmware, including removal of the color wheel

and reprogramming of the controller. The resulting images

were also in greyscale only. The implementation of such

a setting was impossible without having full access to the

projection hardware.

Cotting et al. introduced a coding scheme [11] that

synchronizes a camera to a specific time slot of a DLP

micro-mirror flipping sequence in which imperceptible bi-

nary patterns are embedded. However, not all mirror states

are available for all possible intensities, and the additional

hardware – DVI repeater with tapped vertical sync signal –

is not an off-the-shelf instrument.

With the development of digital projection technology,

some so-called 3D compatible DLP projectors with fresh

rate of 120Hz or higher emerge recently. They make it

possible to implement imperceptible structured light without

any hardware modification or extra assisting hardware.

III. METHOD

A. Pattern Projection Strategy for Imperceptible Structured

Light Sensing

The vital aspect of imperceptible structured light sensing

is the synchronization between camera’s image capture and

projector’s illumination projection. Here we take one capture-

projection cycle as an example to describe the strategy of

pattern projection, which is illustrated in Fig. 1. To achieve

imperceptible structured light projection, the frequency of

projection must exceed the flicker fusion threshold, which is

75Hz for most of the people. First of all, we ensure that the

projector projects an image every 10ms, i.e., at 100Hz. As

shown in Fig. 1, along the time axis, the colored pattern

illumination, the inverse colored pattern illumination, and

entirely white illumination are projected at the time instants

0ms, 10ms, 20ms respectively. The former two images are

projected for ISL sensing, while the latter one is projected

for capturing the scene-texture image at the closest time

instant. On the camera side, the camera captures the pattern-

illuminated image at 5ms. With a refresh rate of the camera

at about 30 frames per second (which is similar to that of

most of the CCD cameras), the camera captures the scene-

texture image at 40ms, shortly after the projector projects

the entirely white illumination on the object. At 70ms a new

capture-projection cycle resumes. With the aforementioned
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capture-projection strategy, the system could capture about

14 image pairs (pattern-illuminated image and scene-texture

image) per second.

The colored pattern illumination in our system is designed

after the principle of pseudorandom array [12]. The grid

points at the intersection corners of neighboring rhombic pat-

tern elements are chosen as the feature points. We employed

an encoding mechanism described in [12] to assure the code

uniqueness of each grid point. The 2D pseudorandom color

pattern of 65× 63 elements that have red, green, blue, or

black colors for the pattern elements (the foreground), and

white color for the background, together with the pattern’s

inverse, are shown in Fig. 2. To human’s sensing the pattern

and the inverse pattern are visually integrated over time. Thus

the illumination appears like fluorescent light to humans.

Next, the 3D positions of the key facial landmarks are

located by a combined use of the the pattern-illuminated

image and the scene-texture image.

Fig. 1. Capture-Projection Synchronization Strategy.

(a) (b)

Fig. 2. Pattern-illuminated images: (a) image under the original illumina-
tion; (b) image under the inverse illumination.

B. Facial Feature Localization

An image pair composed of a pattern-illuminated image

and the corresponding scene-texture image will be avail-

able in each projection-capture cycle. From the pattern-

illuminated image, the 3D positions of the grid points can

be determined from the inter-geometry of the projector and

camera and the intrinsic parameters of the two instruments,

through triangulation. From the scene-texture image, some

salient facial landmarks can be located with ease. How to

locate the 3D positions of the facial features from the two

modalities is described below.

1) Localizing 2D Positions of Key Facial Feature Points

in Scene-texture Image: Automatic face detection and facial

feature localization in 2D image has been an actively re-

searched subject for years, and many effective methods have

been proposed in the literature.

For the sake of accuracy and efficiency of 2D facial feature

localization in the scene-texture image, firstly, we employ the

Adaboost [13] face detection method to extract the position

of the face in the image. We then apply the AAM [14]

method to localize the facial features in the segmented face

image.

For instance, in Fig. 3, 25 feature points are shown that

were defined from AAM localization. They lie on or around

the salient features in the face, such as the inner corner and

outer corner of the eyes, the corner of the eyebrows, the tip

of the nose, and the corner of the mouth etc., which are

relatively less affected by expression variation. In addition,

all the feature points are distributed symmetrically in the

frontal face, allowing at least half of them to be located

accurately even if the face orientation in the operation stage

is an extreme one.

Fig. 3. 2D facial features located by AAM

2) Determining 3D Positions of Grid Points in Pattern-

illuminated Image: How unique code can be attributed to

each position of the illuminated pattern is a key question

in SLS. On this, there are the temporal and spatial coding

schemes. The spatial coding scheme has the advantage that

3D determination can be achieved with a single illumina-

tion and a single image capture. It is therefore particularly

suitable for use in dynamic applications like head pose

estimation. In this work, we employ the color coding scheme

described in [12] to determine the 3D position of grid points

in the pattern-illuminated image. In the illuminated pattern,

each grid point is encoded by the color profile of the 2× 3

rhombic elements surrounding it, and the code is generally

preserved in the image data. Each of such grid points, once its

position in the pattern-illuminated image is located, can thus

have its corresponding position in the illuminated pattern

(on the projector side) identified from the unique code. With

knowledge of the inter-geometry of the projector and camera

and the intrinsic parameters of the two instruments (that

are acquired from an off-line calibration process), the 3D

position of the grid point could be calculated by a simple

triangulation step.
3) Inferring 3D Positions of Key Facial Features: Since

the interval between the captures of the pattern-illuminated

image and the scene-texture image is rather small (relative to

the motion of the head), in this work we make the simplifying

assumption that the head position is constant in the two

images. With that, the grid point positions and the salient
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facial features in 3D can be related through the rigidity of

the human face. More precisely, we infer the facial features

from a combined use of the facial features’ positions in

the scene-texture image, the grid points’ positions in the

pattern-illuminated image, and the grid points’ 3D positions

estimated from the structured light sensing step. For each

feature point in the scene-texture image, a mirror point could

be found in the pattern-illuminated image, as illustrated in

Fig. 4(a). It would be most desirable that the mirror point

coincides with one of the grid points, as that way the 3D

position of the feature point can be read as the depth of

the grid point determined from structured light sensing.

However, in practice the coincidence would hardly occur,

and the 3D positions of the facial feature points would need

to be interpolated from the 3D positions of the nearby grid

points.

Consider a facial feature point and the image patch around

it, which is illustrated by the yellow rectangle in Fig. 4(a).

The window is magnified and shown in Fig. 4(b). Set an n×n

window centered in the mirror point M. Assume that in this

window, there are N grid points, denoted as Gi, i = 1, . . . ,N.

Suppose the 3D position of Gi is Xi. Then the 3D position

X of the feature point could be interpolated as the weighted

average of the 3D positions of the nearby grid points in the

selected window, which could be formulated by Eq. 1, where

αi is the weight, and di in Eq. 2 is the 2D Euclidean distance

between the i-th grid point Gi and the mirror point M. For

computational efficiency, here we need only the 2D positions

of the feature point and the nearby grid points, and in the

structured light sensing step we determine the 3D positions

of not all grid points but only those that are in the immediate

neighborhood of some key facial feature points. Despite that

there should be certain discrepancy between the interpolated

depth and the real depth of each facial feature point, the pose

estimation algorithm described in the following subsection

could embrace such discrepancies and determine the head

pose with the minimum influence.

X =
N

∑
i=1

αiXi, (1)

αi =
di

∑
N
j=1 d j

. (2)

C. 6 DOF Head Pose Estimation

By the aforementioned method, the 3D positions of the

predefined feature points could be determined in each frame.

As a result, the correspondence between two sets of 3D

points, each set from a consecutive image frame, can be

established. Like other computer vision tasks, notably those

that require the estimation of the motion of a rigid object

from 3D point correspondences, here we encounter the

following mathematical problem. We have two 3D point sets

{pi} and {p′i}, i = 1,2, . . . ,N (here, pi and p′i are considered

as 3×1 column matrices), from which we need to determine

the 3D rigid displacement (3×3 rotation matrix R, and 3×1

(a)

(b)

Fig. 4. 3D facial feature landmarking by interpolation: (a) Feature points in
the scene-texture image and the corresponding mirror points in the pattern-
illuminated image. (b) One mirror point and its neighboring grid points in
an n×n window.

translation vector T ) between them:

p′i = Rpi +T +Ni, (3)

where Ni is a noise vector. We want to estimate R and T to

minimize

Σ2 =
N

∑
i=1

∥p′i − (Rpi +T)∥2
. (4)

This problem is known as the absolute orientation prob-

lem, and there are a number of methods in the literature

available to tackle it. The solution methods can be catego-

rized into two classes: iterative form, and closed form [15].

Closed form solutions are generally more superior in terms

of efficiency and robustness, because the iterative methods

suffer from the problems of not guaranteeing convergence,

becoming trapped in local minima of the error function, and

requiring good starting estimate. For these reasons, we chose

a closed form solution to solve this problem. With compre-

hensive consideration of accuracy, robustness, stability, and

efficiency of a number of methods, we employed the method

proposed by Umeyama [16], which is based on computing

the singular value decomposition (SVD) of a correlation

matrix defined by:

H =
N

∑
i=1

p′ci
pci

T =UΛV T
, (5)

where pci
= pi − p̄, p′ci

= p′i − p̄′, p̄ = 1
N ∑

N
i=1 pi, p̄′ =

1
N ∑

N
i=1 p′i.

Then the optimal rotation matrix and translation vector

could be calculated as

R̂ =UV T
, (6)

T̂ = p̄′− R̂p̄. (7)
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As long as more than three non-collinear corresponding

point pairs are available, the method can determine the

transformation parameters uniquely.

IV. EXPERIMENTS

A. Experimentation Setup

To assess the feasibility of the proposed head pose esti-

mation method using imperceptible structured light sensing,

we conducted an accuracy evaluation experiment.

The projector-camera system used in the experiment con-

sisted of a DLP projector (Mitsubishi EX240U projector)

with a native resolution of 1024× 768 and a refresh rate

of 120Hz, and a camera (Point Grey FL2G-13S2C-C CCD

camera with Myutron FV1520 f15mm lens) of 1288× 964

resolution at 30 f ps, both being off-the-shelf equipments. The

focal length of the camera was fixed in 15mm, while that

of the projector was in the range of 25− 31mm. The ILS

was configured for a working distance (the distance from

the camera to the mean position of the human face) of about

800mm.

We first fixed the camera and projector rigidly, and the

projector and camera were connected to a desktop computer

through VGA and IEEE-1394b interfaces respectively. Then

the projector-camera system was calibrated using an LCD

monitor as the calibration object; the calibration method,

detailed in [17], can derive the intrinsic and extrinsic param-

eters of the two instruments. Once the experimental system

was set up, we could collect data for further experiments.

B. Test Dataset Collection

Because of the differences in the various sensing meth-

ods used (such as monocular vision, stereo vision, infrared

vision etc.), there is no standard benchmark for evaluating

the performance of head pose estimation, and researchers

generally tested their algorithms on the databases collected

by themselves. Through reviewing the literature, we found

that the subjects in their databases range from one to less than

10, and for every subject, the video length is about several

minutes. Because of the speciality of the proposed sensing

method, we ought to collect our own experimental data. Our

database are about 15 persons, of which nine are male and

six are female, and six wearing glasses. The length of each

video sequence is 1 minute, i.e., 1200 frames. The sequences

start with the objects facing head-on to the cameras. Several

sequences were recorded for each participant. The sequences

were collected in the laboratory environment with some

global illumination changes.

Performance assessment requires ground-truth of the ori-

entation of the head in each image frame, yet such ground-

truth about a real human subject is generally difficult to

measure in practice. To make the ground truth accessible,

we asked the human subjects to wear a headband to which

a credit card sized white planar board has been attached, as

shown in Fig. 6. The white board was adjusted to be parallel

with the face, implying that the orientation of the face can

be read from that of the white board. With color coded

illumination, the 3D position of any three non-collinear grid

points (named by P1, P2 and P3) on the white board could

be derived by the aforementioned approach, as depicted in

Fig. 5. Let Xi be the 3D positions of Pi, i = 1,2,3, the

surface normal of the white board could be formulated as

n = (X1−X2)×(X3−X2)
∥(X1−X2)×(X3−X2)∥

. This way, the ground-truth of face

orientation was made directly accessible. As for the position

of the head, it was interpreted from the centroid position of

the white board in space.

Fig. 5. Ground truth on the surface orientation of human face: it was made
the same as that of a white board attached to the face, and the latter could
be computed directly for each image.

C. Results

Experimental results at some frames of a subject are pre-

sented in Fig. 6. In each sub-figure the AAM located feature

points are indicated by yellow circles in the corresponding

scene-texture image. The inset image at the bottom-right

corner of each sub-figure shows the corresponding pattern-

illuminated image, while the inset image at the top-right

represents a qualitative description of the estimated head

pose, in which the ground-truth and the estimated head pose

are implied by a blue circle (or ellipse) and a red arrow

respectively.

In the first image frame, the subject was required to have

his face in the head-on orientation with respect to the camera,

so that the orientation vector of the face was parallel with

the optical axis of the camera. This is shown in the top-

left sub-figure of Fig. 6. The 3D positions of all 25 facial

feature points were derived for the first image frame and the

subsequent frames, allowing the head poses relative to the

camera to be estimated on the basis of the corresponding 3D

point pairs.

The mean absolute estimation error of the proposed

method, along with those of three other systems, are shown in

Table I. The comparison should be considered as a reference

only, since the evaluation data-sets and the systems used to

obtain the ground-truth are not exactly the same.

It should be noticed that the mean absolute error of yaw in

the proposed method was generally larger than those of pitch

and roll. We believe the reason for it lies in the asymmetric

inaccuracy in localizing the 2D feature points by the AAM

method, which was incurred by the illumination shadows

around the eyes and nose caused by extreme pose variations.

For real-time applications, efficiency is of great impor-

tance, hence we implemented the proposed method in C++

using the Intel OpenCV Library to better evaluate its process-

ing time. Through multi-thread programming, the projection-

capture process and calculation process were executed in

two different threads respectively, each of which was able
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Fig. 6. Experimental results

TABLE I

COMPARISON OF POSE ESTIMATION ERRORS

Method Sensing
Mean Absolute Error (∘)
Yaw Pitch Roll

Murphy-Chutorian [3] Monocular 3.39 4.67 2.38
Morency [7] Stereo 3.50 2.40 2.60
Jimene [8] Stereo 1.85 1.61 1.20
Our method ILS 2.02 1.18 0.76

to run in real time in a desktop with Intel Pentium D

3.0GHz CPU. Table II shows the average processing times

for AAM facial features localization, 3D depth calculation,

and head pose estimation in the given system. Facial feature

localization with AAM is the most time-consuming process.

Processing times varied slightly according to the number of

iterations in the AAM algorithm. However, they all satisfied

the requirement of real-time application.

V. CONCLUSION AND FUTURE WORK

We have described a method of estimating head pose using

imperceptible structured light sensing. Through elaborate

pattern projection strategy and camera-projector synchro-

nization, pattern-illuminated images and the corresponding

scene-texture images can be captured under imperceptible

patterned illumination. The 3D positions of the facial feature

points are then determined by putting together the 2D

locations of the facial feature points in the scene-texture

image (that are localized by AAM), and the point cloud

generated by structured light sensing. Finally, the 6-DOF

head motion is estimated from the 3D corresponding feature

point pairs over the image sequence through SVD of a

correlation matrix.

TABLE II

AVERAGE PROCESSING TIME

Subroutine AAM 3D Depth Calc. Pose Est. Total

Time (ms) 17.43 1.82 2.56 21.81

The proposed method has been tested on video sequences

captured by a prototype of the described system. Experi-

mental results show that the proposed method is effective,

accurate, and fast for 6-DOF head pose estimation. The

processing time is short enough for real-time application.

Our future work will be about introduction of motion

compensation between the pattern-illuminated image and

the subsequent scene-texture image, and of the use of 3D

deformable model that embraces facial expression variation,

so that better estimation accuracy can be achieved.
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