

Combining Contrast Saliency and Region Discontinuity for Precise Hand Segmentation in Projector-Camera System

Jingwen Dai Ronald Chung
Computer Vision Laboratory
Dept. of Mech. and Automation Engineering
The Chinese University of Hong Kong

ICPR2012, Tsukuba Science City, Japan, 14 Nov 2012

Motivation

DLP Pico Projector !

Previews Works

- Skin-color Detection
- Background Subtraction

Previews Works

- Graph-based Approaches
 - □ Time Consuming
 - User's Interaction
- Additional Instruments
 - Infrared Camera
 - Stereo Camera
 - Depth Sensor (Time-of-Fight Camera, Kinect etc.)
- Our Method

w/o pre-calibration & pre-training

Rough Segmentation by Contrast Saliency

- Hand Most noticeable object
- Salient Region Detection
- Saliency Detector Requirements:
 - Emphasizing the largest salient objects
 - Uniformly highlighting whole salient regions
 - Disregarding artifacts arising from projection content and ambient illumination
 - Accomplishing detection less than 15ms

Histogram-based Contrast Saliency

M. Cheng et al. Global contrast based salient region detection, CVPR2011.

Mean-Shift Region Smoothing

Precise Segmentation by Fusing

Confidence Function

$$C_F(k) = \frac{1}{e^{(L-1)}} \left[\alpha \bar{S}(k) + \beta \bar{S}_N(k) + \gamma A(k) \right]$$

- The average salient value of the pixels in the partition
- The number of the neighbor partitions and the average salient value of neighbor partitions
- The area of the partition
- Whether the partition is on the image boundaries

$$\begin{cases} \beta = \frac{1}{2}, \alpha = \gamma = \frac{1}{4}, & \text{when N} = 1 \\ \alpha = \frac{1}{2}, \beta = \gamma = \frac{1}{4}, & \text{otherwise} \end{cases}$$

Precise Segmentation by Fusing

Experiments – Data Collection

Experiments – Accuracy Evaluation

Comparison with related methods

- The classic approach of statistical color model-based method (most cited in literature)
- The background subtraction method (most precise)
- The graph based method (most recent)

Evaluation Criterion

• F-beta score: $F_{\beta} = \frac{(1+\beta^2)pr}{\beta^2p+r}$

 N_C , N_R , N_G are the number of **correct segmented** pixels, **all segmented** pixels and **ground-truth** pixels respectively.

Experiments – Accuracy Evaluation

Experiments – Accuracy Evaluation

Experiments – Efficiency Evaluation

Method	Ours	SCM	BkSub	GB
Time (ms/frame)	29.6	10.9	2.3	115.2

Conclusion and Future Works

A novel coarse-to-fine approach for hand segmentation in projector-camera system, which puts together contrast saliency and region discontinuity information through a confidence function.

Future Works

- □ Improve the formulation of confidence function
- Reduce algorithm complexity

THANK YOU!!

If you have any questions, please contact *Dr. Jingwen Dai*

dai@cs.unc.edu