
TopoTag: A Robust and Scalable Topological Fiducial Marker System

Guoxing Yu Yongtao Hu Jingwen Dai
Guangdong Virtual Reality Technology Co., Ltd.

{calvin.yu, ythu, dai}@ximmerse.com

Abstract

Fiducial markers have been playing an important role in
augmented reality (AR), robot navigation, and general ap-
plications where the relative pose between a camera and
an object is required. We introduce TopoTag, a robust and
scalable topological fiducial marker system, which supports
reliable and accurate pose estimation from a single image.
TopoTag uses topological and geometrical information in
marker detection to achieve higher robustness. Without sac-
rificing bits for higher recall and precision like previous
systems, TopoTag can use full bits for ID encoding and sup-
ports tens of thousands unique IDs and easily extends to
millions and more by adding more bits, thus achieves per-
fect scalability. We collect a large dataset including in total
169,713 images for evaluation, involving in-plane and out-
of-plane rotation, image blur, different distances and vari-
ous backgrounds, etc. Experiments show that TopoTag sig-
nificantly outperforms previous fiducial marker systems in
terms of various metrics, including detection accuracy, ver-
tex jitter, pose jitter and accuracy, etc. In addition, TopoTag
supports occlusion as long as main tag topological struc-
ture is maintained and flexible shape design where users
can customize inter and outer marker shapes. Our dataset,
marker design and detection algorithm are public to the
community1.

1. Introduction
In this paper, we introduce TopoTag, a new fiducial

marker and detection algorithm that is more robust and ac-
curate than current fiducial marker systems. Fiducial mark-
ers are artificial objects designed to be easily detected in
an image from a variety of perspectives. They are widely
used for augmented reality and robotics applications be-
cause they enable localization and landmark detection in
featureless environments [16]. Previous works on fiducial
markers mainly focus on one or more of the following ar-
eas: (1) improve detection accuracy via specialized tag de-

1TopoTag homepage: https://sites.google.com/view/
topotag/home

Figure 1: Three TopoTag markers.

sign [17, 18, 1, 32]; (2) decrease pose estimation error via
precise vertex estimation [45] or introducing more feature
points [5]; (3) increase unique identities [9, 19, 15, 21]; (4)
improve robustness under occlusion [5, 20] and other use
cases [35, 8, 14] and (5) speedup [30, 45, 16, 39].

TopoTag utilizes topological information in tag design to
improve robustness, which achieves perfect detection accu-
racy on the large dataset we collected and also datasets from
others. We show that all tag bits can be used to encode iden-
tities without sacrificing detection accuracy, thus achieving
rich identification and easy scalability for more. In addi-
tion, TopoTag offers more feature correspondences for bet-
ter pose estimation. Results show that TopoTag achieves
the best performance in vertex jitter, pose error and jitter.
TopoTag also supports occlusion as long as main tag topo-
logical structure is maintained and flexible shape design
where users can customize inter and outer marker shapes.

We collect a large dataset including in total 169,713 im-
ages with TopoTag and several state-of-the-art tag systems.
Robot arm is used to guarantee repeated trajectories for
each tag for fair comparison. The rich modalities of the
dataset including in-plane and out-of-plane rotations, image
blur, different distances and various backgrounds, etc offer
a challenging benchmark to evaluate.

In summary, the contributions of this paper are: (1)
we present TopoTag, a topological-based fiducial marker
and detection algorithm; (2) we demonstrate that our tag
achieves the best performance in various metrics including
detection accuracy, localization jitter and accuracy, etc and
support occlusion and flexible shapes; (3) we show that it’s
possible in tag design to use full bits for ID encoding with-
out sacrificing detection accuracy, thus achieving easy scal-

1

ar
X

iv
:1

90
8.

01
45

0v
1 

 [
cs

.C
V

] 
 5

 A
ug

 2
01

9

https://sites.google.com/view/topotag/home
https://sites.google.com/view/topotag/home


CCC Cho et al. Knyaz&Sibiryakov InterSense FourierTag RuneTag

CCTag Pi-Tag Prasad et al. Matrix ARToolKit CyberCode

VisualCode ARToolKitPlus binARyID Tateno et al. SIFTTag ARTag

AprilTag ArUco ChromaTag D-touch reacTIVision BullsEye

Figure 2: Existing fiducial marker systems.

ability; and (4) we collect a large dataset of various tags, in-
volving in-plane and out-of-plane rotation, image blur, dif-
ferent distances and various backgrounds, etc.

2. Related Work

Figure 2 shows many different fiducial marker systems
discussed in this section.

Circular patterns. Among the earliest work, Gatrell
et al. [22] propose to use concentric contrasting circle
(CCC). It’s further enhanced in [9] by adding colors and
multiple scales. In [27, 31], dedicated data rings are added
to the marker design for rich identification. Sattar et al. [41]
and Xu et al. [46] propose FourierTag with a frequency im-
age as the signature. RuneTag [5, 4] and Pi-Tag [6] propose
using rings of dots to improve robustness to occlusion and
provide more points for pose estimation. CCTag [7, 8] and
followed work by Prasad et al. [35] use multiple rings to
increase robustness to blur and ring width for encoding.

Square patterns. To be easily localized, the majority
of fiducial systems are designed to contain a thick square
border. Matrix [36], CyberCode [37] and VisualCode [38]
are the first and simplest proposals. ARToolkit [25] is well
known and widely used in many virtual reality applications.
It includes a pattern in their inner region for identification
via image correlation. ARTag [17] and ARToolkitPlus [44]
improve the recognition technique with a binary coded pat-
tern. In addition, they are designed with error correction
mechanism to increase robustness. BinARyID [19] pro-
poses a method to generate markers focused on avoiding
rotation ambiguities. Schweiger et al. [42] propose using

SIFT and SURF filters that are specifically designed for
SIFT and SURF detectors. Tateno et al. [43] propose us-
ing nested markers to improve performance under different
distances. Several works investigate using multiple fiducial
markers in a checkerboard to improve camera calibration
[1] and reduce the perspective ambiguity by further adding
color [15]. AprilTag [32, 45] is a faster and more robust
reimplementation of ARTag. Garrido-Jurado et al. [20, 21]
propose ArUco using mixed integer programming to gener-
ate markers. ChromaTag [16] uses color over AprilTag to
improve marker detection speed. Square markers choose to
use four corner points for pose estimation, which is the min-
imum number for unambiguous pose estimation [33]. As a
contrast, TopoTag offers more feature correspondences for
a better pose estimation.

Topological patterns. D-touch [13, 12] is the earli-
est work to use topological patterns in tag design. Marker
detection is based on the region adjacency tree information.
D-touch employs a single topology for all markers in the set
and does not provide a specific method for computing loca-
tion and orientation. ReacTIVision [3, 2, 24] improves over
D-touch to provide unique identities purely by the topologi-
cal structure. BullsEye [26] is specially designed optimized
for GPU. Both ReacTIVision and BullsEye can only re-
cover 2D location and orientation due to the limitation of
not enough matched feature points.

Machine learning. Claus et. al [10, 11] use trained
classifiers to improve detection in cases of bad illumination
and blurring caused by fast camera movement. Random-
ized forests are also used to learn and detect planar objects
[28, 34]. In practice, these algorithms do not achieve detec-
tion accuracies on par with detection algorithms specifically
designed for marker detection [16].

3. TopoTag Design
TopoTag utilizes topological structure information in tag

design, which has been proven with robustness with illu-
minate variation and false detection [13]. Existing fiducial
marker systems, especially square patterns, sacrifice tag bits
to handle four rotation ambiguities during decoding [15].
Additional bits will also be reserved for incorporating Ham-
ming distance strategy in order to improve false positive
rejection. High robustness with topological design helps
saving tag bits for encoding identities. To avoid rotation
ambiguities, TopoTag introduces baseline node in its topo-
logical structure. The baseline node is specially designed
to be different from other nodes in the tag. TopoTag uses
a black node with two white children nodes inside as the
baseline node and other black nodes with at most one white
child node as normal nodes. Note that, baseline node can be
defined with other forms like with three or more white chil-
dren nodes for different needs. Baseline node defines the
search starting position of the tag, thus avoiding checking



Figure 3: Topological tree of two TopoTags.

rotation ambiguities. All normal nodes are used for identity
encoding with 0 denoting no child node and 1 otherwise.
The identity encoding for the two markers shown in Fig-
ure 3 is 0000000 = 0 and 1111111 = 127 respectively.

For pose estimation, instead of using only four border
points in previous square systems [17, 44, 32, 20, 21, 45, 16]
which is the minimum number required, TopoTag offers
more point correspondences for more accurate pose esti-
mation. Baseline node (more specifically its two children
nodes) and all normal nodes are all used as feature points,
thus achieving a better pose estimation.

Note that, as TopoTag design is based on topological in-
formation, there is no restriction for the shapes used in the
tag. Both inner and outer shapes can be customized as long
as the desired topological structure is preserved. Figure 1
shows three different design samples of TopoTag. For easy
searching and model simplicity, in current TopoTag design,
we choose to place all inner nodes uniformly spaced and
compacted into a n× n squared shape.

4. TopoTag Detection

Figure 4 outlines main steps of TopoTag detection.
Topological information is extensively used for 2D marker
detection, and further corresponding geometrical informa-
tion for ID decoding. 3D pose estimation is achieved by
taking advantage of all TopoTag vertices.

4.1. 2D Marker Detection

Threshold map estimation. Similar to the idea of
adaptive thresholding, we estimate threshold for each pixel
by analyzing its surrounded pixels. The analysis can be
done on the original image. In practice, we find that do-
ing on a downsampled version (scalar s1) is more accurate
due to image noise and blur, which also brings speed ben-
efits. Any pixel will be set to α if its value is less than α
to remove too dark pixels. Average values are computed
on a local region (window size w) on the downsampled im-
age. To further handle noise, the downsampled average map
can be further downsampled (scalar s2). The final threshold
map is achieved by upsampling the downsampled average
map by s1 × s2 using bilinear interpolation, see Figure 4b.

Binarization. Binarization is achieved by comparing
the input image with the threshold map. A minimum bright-
ness (β) is set to filter too many small regions (i.e. set to
black if pixel value is less than β). See Figure 4c for an
example of binarization result.

Topological filtering. After segmentation, we build
the topological tree of the connected binary regions. To find
candidate tags, we search the tree based on two conditions:
(1) the number of children nodes should be within [ζmin −
τ, ζmax + τ ], where ζmin is the number of nodes for tag ID
= 0 with all black leaves except the baseline node and ζmax

for the tag with maximum ID with no black leaves, and τ is
the tolerance level allowed; (2) max depth of the tree should
be exactly 3. See Figure 3 for examples of the topological
trees for both ζmin and ζmax cases of our 9-bit tags. Figure
4d shows the result after topological filtering.

Error correction. There are possible error nodes
within the tag region due to noise or occlusion. Figure 4d
shows an example of one error node close to the baseline
node because of one ant sitting on the tag. To correct these
error nodes, we filter out smaller nodes if their areas are
less than θ1% of the baseline node area. Figure 4e shows
the result after error correction.

4.2. ID Decoding

To decode ID, we need to
determine the node sequence
and map it to a binary code
string. Take a 16-bit TopoTag
as an example, see the right fig-
ure and Figure 4f of the se-
quence we find for each node
of the tag. To start, we first
find the baseline node (includ-
ing p1 and p2) and determine
its search direction based on whether there are nodes along
the direction with angel tolerance θ2, i.e. p1→p2. Along
the direction, we find the node with the largest distance, i.e.
p3. For the remaining nodes, we first find the node with
largest angle against the baseline direction p1→p2 and then
the largest distance along the direction, i.e. p4. p5 is de-
termined along direction p1→p3, p6 and p7 along p1→p4.
The remaining nodes are determined in order in the simi-
lar way. After finding each node, we can simply map each
node to 1 or 0 depending wether it contains a white child
node or not and decode the tag based on the binary code
string. For the example shown here and in Figure 4, the
binary code string is 10000011000110, which is decoded
with ID = 8390. It’s worthy noting that, ID decoding is
processed on the images after removing the perspective dis-
tortion to improve robustness.



(a) Input image. (b) Threshold map. (c) Binarization. (d) Topological filtering.

(e) Error correction. (f) Decoding. (g) Vertex estimation. (h) Pose estimation.

Figure 4: Main steps of TopoTag detection. Best viewed in color.

4.3. 3D Pose Estimation

For each node, we estimate the vertex by computing the
centroid on the original image of its supporting region. The
supporting region can be the binary mask or its dilated ver-
sion (with dilate size δ). The centroid can be determined via
image moments, i.e. {ū, v̄} = {M10

M00
, M01

M00
}.

For pose estimation, the exact correspondence between
the 2D image features and the features of the associated
model is needed (feature correspondence). At least 4 points
are needed to recover unambiguous pose estimation for pla-
nar tags [33]. Unlike most of previous work using only 4
corner points, all TopoTag vertices of tag bits are used for
a better pose estimation. For 16-bit tag, 16 vertex corre-
spondences are used, including 2 baseline white nodes and
14 normal black nodes. 6-DoF pose estimation is achieved
by solving the PnP problem and Levenberg-Marquardt al-
gorithms [29, 23] based on these feature correspondences.

5. Results and Discussion

Algorithm setup. Throughout the experiment, we
use s1 = 4, s2 = 8, w = 5, α = 45, β = 50 for seg-
mentation, τ = 0, θ1 = 30, θ2 = 0.1 rad for decoding,
δ = max{2,

⌊
l
10

⌋
} for vertex estimation, where l is the

short length of the binary mask region.

All the experiments have been performed on a typical
laptop PC equipped with an Intel Core i7-7700HQ proces-
sor (8 cores @2.8Ghz) and 8GB of RAM.

5.1. Dataset

Previous work, like [32, 5], mainly focus on evaluating
performance on synthetic images. Although several work
evaluate part of their performance on more realistic scenes,
e.g. ARToolKitPlus [44] evaluates the speed on several
handheld devices and AprilTag [32, 45] evaluates false pos-
itive on LabelMe [40] dataset which is designed for general
object detection and recognition research, there is still no
uniform dataset for fiducial marker evaluation, thus make
it hard to reproduce their result and compare with others.
More recently, in ChromaTag [16] work, they collected a
dataset to compare their work with AprilTag [32], CCTag
[8], and RuneTag [5]. However, different tags are placed
side by side during their dataset collection, thus make it not
ideal for comparison especially when tags viewed from a
large angle as different markers will have different distances
and facing angles towards the camera.

In this work, we try to fill this gap by collecting a large
dataset, including in total 169,713 images, which involves
in-plane and out-of-plane rotations, image blur, various dis-
tances and cluttered backgrounds, etc. We use a global shut-
ter industrial camera with 1280×960 resolution streaming
at 38.8 fps and 98◦ diagonal field of view. The exposure
is fixed at 10 ms. Using relative long exposure guaran-
tees enough brightness of the captured images, which at
the same time introduces image blur phenomenon for more
challenging use cases (see the first image in Figure 7 for
an example). Camera is fixed to a robot arm2 to guarantee
repeated trajectories for different tags. Figure 5 shows the

2We use a robot arm from DENSO (VS-6556). Link: https://www.
denso-wave.com/en/robot/product/five-six/vs.html

https://www.denso-wave.com/en/robot/product/five-six/vs.html
https://www.denso-wave.com/en/robot/product/five-six/vs.html


Figure 5: Dataset collection setup. We collect dataset by
putting tags (label #2) in a rich textured background within
an indoor environment with fixed lighting (label #1). Cam-
era (label #3) is fixed to a robot arm (label #4) to guarantee
repeated trajectories for different tags.

dataset collection setup. Three sequences will be collected
for each tag, with trajectory for each sequence shown in Fig-
ure 6. In all three sequences, the camera keeps facing the
front as the camera icon shown in the first image of Figure 6.
In Seq #1, camera moves along several lines at a constant
speed, with different out-of-plane rotations for each line in-
cluding 0◦ (i.e. camera faces the tag in right ahead), 30◦

and 60◦. In Seq #2, the camera moves back and at the same
time rotates in-plane within 0-180◦ at a constant speed back
and forth. Note that, as we can only rotate around the robot
arm and there is a offset between camera with it, camera’s
trajectory will not be an ideal half circle. In Seq #3, cam-
era is placed at 10 fixed positions (P1→P10). Besides 0◦,
30◦and 60◦ out-of-plane rotations as in Seq #1, we further
collect data with 75◦ (P1 and P10). In all three sequences,
the background is filled with rich textured images to simu-
late more complex use scenarios.

We collect the dataset for TopoTag and previous tags in-
cluding ARToolKit [25], ARToolKitPlus [44], ArUco [20],
RuneTag [5], ChromaTag [16] and AprilTag [45]. A 16-bit
TopoTag is used throughout the experiment as it provides
the state-of-the-art most unique identities, see Table 1 for
details. And, without loss of generality, the tag comes with
square inner and outer shapes, see the first image in Fig-
ure 1. For systems with multiple tag families, we collect
data for each. For each tag family, we randomly select one
ID for evaluation. In our experiment, we randomly select ID
= 1 for ARToolKit, 262 for ARToolKitPlus, [104, 90, 136]
for ArUco’s [16h3, 25h7, 36h12], 107 for RuneTag, 0 for
ChromaTag, [0, 204, 25, 1314, 343] for AprilTag’s [16h5,
25h7, 25h9, 36h9, 36h11] and 278 for TopoTag. Outer bor-
der sizes of all tags are the same of 5 cm. For each tag,
there are ≈100,000 images collected, including ≈1,000 for
Seq #1, ≈1,200 for Seq #2 and ≈7,800 for Seq #3. Please
see Figure 7 for sample collected images for each sequence.

It’s worthy noting that segmentation is crucial for
marker detection and pose estimation for all marker sys-
tems. Thus, for the fair comparison, we fine tune the

Figure 6: Robot arm trajectory/points in different sequences
(top-left for Seq #1, top-right for Seq #3). Camera trajectory
is shown for Seq #2 for better visualization (bottom row).
Tag position is shown in blue. Best viewed in color.

Figure 7: Sample collected images. Images are from Seq
#1 (with ARToolKit), Seq #2 (with AprilTag 25h9) and Seq
#3 (with TopoTag) from left to right respectively.

segmentation parameters for each marker algorithm un-
less it already uses advanced approaches like adaptive
thresholding, line detection, etc. Specifically, we use
threshold of 60 instead of default 100 for ARToolKit,
15 and 2 for AdaptiveThresholdWindowSize and
AdaptiveThresWindowSize_range instead of de-
fault -1 and 0 for ArUco. Please refer to the supplemen-
tary material for the performance comparison between their
default setups and our fine tuned versions.

5.2. Dictionary Size vs. Tracking Distance

Table 1 shows the comparison of dictionary size vs.
tracking distance of different tag systems. Generally speak-
ing, more tag bits offer more spaces to encode identities,
but sacrifice tracking distance as region for each bit gets



Table 1: Dictionary size vs. tracking distance.

Tag Dictionary Size Distance (m)
ARToolKit 103 1.199

ARToolKitPlus 512 1.154
ArUco (16h3) 250 1.309
ArUco (25h7) 100 1.187

ArUco (36h12) 250 1.199
RuneTag 17,000 0.221

ChromaTag 30 0.560
AprilTag (16h5) 30 1.220
AprilTag (25h7) 242 1.171
AprilTag (25h9) 35 1.226
AprilTag (36h9) 5,329 1.223

AprilTag (36h11) 587 1.168
TopoTag (3x3) 128 1.204
TopoTag (4x4) 16,384 1.055
TopoTag (5x5) 8,388,608 0.670

smaller. We can see that TopoTag achieves comparable
tracking range when dictionary size is small (9-bit), while
offers significant larger tracking range when dictionary size
extends to tens of thousands (16-bit vs. RuneTag with the
state-of-the-art most identities). In addition, TopoTag offers
the scalability of extending dictionary size to millions with
still acceptable tracking distance (25-bit).

5.3. Detection Accuracy

Table 2 summarizes the detection results and Figure 8
highlights the recall and precision of different captured
points on Seq #3. We follow the metrics in [16]. True posi-
tives (TP) are defined as when the tag is correctly detected,
i.e. locate the tag and correctly identify the ID (have at least
50% intersection over union between the detection and the
ground truth). False positives (FP) are defined as detections
that do not identify the location and ID correctly. False neg-
atives (FN) are defined as any marker that is not identified
correctly. Precision is TP

TP+FP and recall is TP
TP+FN .

TopoTag performs perfectly on all three sequences,
achieving 100% on both recall and precision. All marker
systems except ChromaTag work great and achieve >
99.5% on precision due to their unique false positive rejec-
tion techniques. However, most systems except ARToolKit,
ARToolKitPlus and ArUco fail to achieve a high recall, i.e.
< 81%. Figure 8 shows that all previous systems degrade
on recall or precision or both when markers are viewed from
large angles. This probably results from large distortion, de-
creased lightness and blur issues, which distracts marker de-
tection. TopoTag, on the other hand, has no obvious degra-
dation. ChromaTag performs worse on both possibly due
to the cluttered colored background and relative low bright-
ness of collected images distracting its detection based on

310 tags are provided in ARToolKit package. Theoretically, any pattern
can be used for tag design, but without providing a method.

Table 2: Detection accuracy (with run time).

Tag Recall (%) Precision (%) Time (ms)
ARToolKit 99.990 99.880 5.864

ARToolKitPlus 98.297 100.000 9.314
ArUco (16h3) 100.000 99.910 54.319
ArUco (25h7) 99.009 100.000 53.930

ArUco (36h12) 99.470 100.000 56.001
RuneTag 0.281 100.000 455.832

ChromaTag 9.088 9.190 9.103
AprilTag (16h5) 77.285 99.883 246.762
AprilTag (25h7) 75.711 100.000 244.433
AprilTag (25h9) 80.405 100.000 251.275
AprilTag (36h9) 78.704 100.000 240.694
AprilTag (36h11) 77.577 100.000 241.314

TopoTag 100.000 100.000 33.638

1 2 3 4 5 6 7 8 9 10

Index

0

10

20

30

40

50

60

70

80

90

100

R
e

c
a

ll

Recall by different points

ARToolKit

ARToolKitPlus

ArUco (16h3)

ArUco (25h7)

ArUco (36h12)

ChromaTag

AprilTag-2 (16h5)

AprilTag-2 (25h7)

AprilTag-2 (25h9)

AprilTag-2 (36h9)

AprilTag-2 (36h11)

TopoTag

1 2 3 4 5 6 7 8 9 10

Index

0

10

20

30

40

50

60

70

80

90

100

P
re

c
is

io
n

Precision by different points

ARToolKit

ARToolKitPlus

ArUco (16h3)

ArUco (25h7)

ArUco (36h12)

ChromaTag

AprilTag-2 (16h5)

AprilTag-2 (25h7)

AprilTag-2 (25h9)

AprilTag-2 (36h9)

AprilTag-2 (36h11)

TopoTag

Figure 8: Recall and precision by different points on Seq
#3. Best viewed in color.

color information. RuneTag performs the worst with lowest
recall < 0.3% and fails to detect any frame on Seq #3.

False Positive Rejection. Since all our dataset con-
tain valid tags. FP mainly focuses on the background ex-
cluding the tag regions. To better evaluate FP, as in [45], we
further run the experiment on LabelMe [40] dataset, which
consists of 207,8834 images of natural scenes from a wide
variety of indoor and outdoor environments, none of which
contain any valid fiducial markers. We run this test for AR-
ToolKit, ARToolKitPlus, ArUco, AprilTag and TopoTag as
they achieve the state-of-the-art detect accuracy results on
our dataset as shown in Table 2. There are 9756 false pos-
itives returned by ARToolKit, 49321 by AprilTag (16h5)
and 146 by ArUco (16h3). As a contrast, TopoTag and AR-
ToolKitPlus both have no false positives.

5.4. Localization Jitter and Accuracy

Localization jitter and accuracy are evaluated on Seq #3.

5.4.1 Pose Error

We evaluate the accuracy between each point and its next
point, where robot’s measurements serve as the groundtruth.

4This is the latest LabelMe dataset size, which is slightly different the
size of 180,829 from that was used in [32, 45].



P1
P2

P2
P3

P3
P4

P4
P5

P5
P6

P6
P7

P7
P8

P8
P9

P9
P10

Index

0

5

10

15

20

25

30

E
rr

o
r

Pose position error (unit: mm)

P1
P2

P2
P3

P3
P4

P4
P5

P5
P6

P6
P7

P7
P8

P8
P9

P9
P10

Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

o
r

Pose rotatoin error (unit: deg)

ARToolKit

ARToolKitPlus

ArUco (16h3)

ArUco (25h7)

ArUco (36h12)

ChromaTag

AprilTag-2 (16h5)

AprilTag-2 (25h7)

AprilTag-2 (25h9)

AprilTag-2 (36h9)

AprilTag-2 (36h11)

TopoTag

Figure 9: Pose position (left) and rotation (right) error com-
parison. We trim the figures for better visualization. Please
refer to our supplementary material for full figures.

Table 3: Average and maximum pose errors for each tag.
Best results are shown in bold.

Tag position (mm) rotation (deg)
avg max avg max

ARToolKit 8.639 16.499 0.022 0.058
ARToolKitPlus 8.923 20.101 0.040 0.089
ArUco (16h3) 8.191 21.876 0.248 0.908
ArUco (25h7) 10.049 27.212 0.225 0.765
ArUco (36h12) 8.768 22.663 0.078 0.195

ChromaTag 29.586 45.643 0.131 0.158
AprilTag (16h5) 2.894 7.287 0.031 0.055
AprilTag (25h7) 2.704 6.641 0.026 0.049
AprilTag (25h9) 3.178 7.320 0.024 0.041
AprilTag (36h9) 3.228 7.394 0.024 0.047

AprilTag (36h11) 2.549 6.489 0.022 0.049
TopoTag 1.011 3.289 0.019 0.068

Since there are in total 10 points in Seq #3, 9 accuracy val-
ues will be computed. See Figure 9 for the results of both
position and rotation accuracies. Average and maximum
pose errors for each tag can be seen in Table 3. TopoTag
outperforms all previous systems in position error by a large
margin (over 60% error reduction by average and about
50% by max compared to the 2nd best) and is comparable
with the state-of-the-art on rotation error.

5.4.2 Pose Jitter

Jitters are evaluated at each point using the standard devi-
ation (STD) metric. See Figure 10 for the result. Average
and maximum jitter for each tag can be seen in Table 4.
TopoTag outperforms all previous systems in rotation jitter
by a large margin (over 63% jitter reduction by average and
over 57% by max compared to the 2nd best) and is compa-
rable with the state-of-the-art on position jitter.

5.4.3 Vertex Jitter

Vertex jitter measures the noise of the 2D feature point esti-
mation, whose errors will propagate to the estimation of 6-

1 2 3 4 5 6 7 8 9 10

Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J
it
te

r

Pose position jitter (unit: mm)

1 2 3 4 5 6 7 8 9 10

Index

0

0.5

1

1.5

2

2.5

3

J
it
te

r

Pose rotatoin jitter (unit: deg)

ARToolKit

ARToolKitPlus

ArUco (16h3)

ArUco (25h7)

ArUco (36h12)

ChromaTag

AprilTag-2 (16h5)

AprilTag-2 (25h7)

AprilTag-2 (25h9)

AprilTag-2 (36h9)

AprilTag-2 (36h11)

TopoTag

Figure 10: Pose position (left) and rotation (right) jitter
comparison. We trim the figures for better visualization.
Please refer to our supplementary material for full figures.

Table 4: Average and maximum pose jitters for each tag.
Best results are shown in bold.

Tag position (mm) rotation (deg)
avg max avg max

ARToolKit 0.112 0.481 0.160 0.754
ARToolKitPlus 1.134 3.584 0.421 1.496
ArUco (16h3) 0.363 1.636 0.230 0.491
ArUco (25h7) 0.364 1.155 0.322 0.710
ArUco (36h12) 0.573 2.553 0.526 2.832

ChromaTag 49.880 130.958 8.479 14.616
AprilTag (16h5) 0.079 0.163 0.654 2.512
AprilTag (25h7) 0.104 0.231 0.879 3.160
AprilTag (25h9) 0.087 0.154 0.673 2.333
AprilTag (36h9) 0.102 0.222 0.753 2.299

AprilTag (36h11) 0.092 0.179 0.734 2.543
TopoTag 0.055 0.173 0.058 0.211

DoF pose. We compare with two best previous methods, i.e.
AprilTag and ArUco. Both AprilTag and ArUco are square
markers using intersections of quad lines to achieve sub-
pixel vertex precision. RUNE-Tag and ChromaTag are not
evaluated as they fail to reliably detect all positions in Seq
#3, i.e. number of detected frames for a point is less than
505. Square markers, like ARToolKitPlus and ChromaTag,
theoretically will have similar performance as AprilTag and
ArUco. ARToolKit is not evaluated as it uses correlation
against a database to detect instead of finding fixed corners.
All candidate methods are evaluated with 16-bit tags (i.e.
AprilTag’s 16h5 and ArUco’s 16h3). Similar to pose jitter
evaluation, STD metric is used.

Results can be seen in Figure 11. TopoTag performs con-
sistently the best or comparable to the state-of-the-art across
all points, especially when the marker angles become larger
(e.g. ≥ 60◦) and with image blur (see P1, P2, P9 and P10).
AprilTag performs better than ArUco when marker angles
are relative small (≤ 30◦, see P3-P8) thanks to its edge re-
finement, but become worse for larger marker angles.

5ChromaTag fails to reliably detect P2, P4, P5, P6 and P7; and all 10
positions are failed for RUNE-Tag.



1 2 3 4 5 6 7 8 9 10

Point index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

V
e
rt

e
x
 j
it
te

r

Average vertex jitter (unit: pixel)

TopoTag

AprilTag-2

ArUco

1 2 3 4 5 6 7 8 9 10

Point index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
e
rt

e
x
 j
it
te

r

Maximum vertex jitter (unit: pixel)

TopoTag

AprilTag-2

ArUco

Figure 11: Average and maximum vertex jitter comparison.

5.5. Speed

5.5.1 Dictionary Computation

Dictionary computation usually is a time-consuming opera-
tion due to the specially designed lexicode generation algo-
rithm and Hamming distance strategy for high robustness.
Though there is no need to do this online, it’s still meaning-
ful to make it efficient enough. ArUco takes about 8, 20 and
90 minutes respectively for dictionaries of sizes 10, 100 and
1000 [20], while it can take several days to generate 36-bit
tags for AprilTag [32]. As TopoTag supports full tag bits
for encoding, it takes almost no time as ID can be directly
mapped to the binary code string for dictionary generation.

5.5.2 Tag Detection

Table 2 (last column) shows the running time comparison.
TopoTag takes less time than ArUco (38% ⇓), AprilTag
(86% ⇓) and RuneTag (93% ⇓). Though ARToolKit, Chro-
maTag and ARToolKitPlus run faster, they offer signifi-
cantly less identities, see Table 1. For TopoTag, most time
is spent on segmentation (68.8%), followed by decoding &
vertex estimation (29.7%) and pose estimation (1.5%).

No parallelization is utilized in current TopoTag imple-
mentation, which will normally bring further speed gain
otherwise. We have implemented the segmentation part
in a single pipeline on a Lattice FPGA (LFE5UM-45 with
44k LUTs, 1.9 Mb RAM and without using external DDR),
which is decreased to < 100 us achieving 230× speedup.

5.6. Flexible Shape Support

TopoTag supports both customized outer and inner
shapes as long as topological structure is maintained. Fig-
ure 1 shows three TopoTags with various inter shapes like
squares, circles, hexagons and different outer shapes like
squares and customized like a bufferfly. Figure 12 shows
our algorithm running for these customized TopoTags.

Experiments show that tags with different shapes have
compatible results. Please see Table 5 for detailed compari-
son. It’s worthy noting that all these four different TopoTags
have 100% on both detection recall and precision which fur-
ther validates the robustness of our system.

Figure 12: Detection and pose estimation of two customized
TopoTags. Best viewed in color.

Figure 13: TopoTag detection under occlusion indicated by
yellow arrows (before and after). Best viewed in color.

Table 5: Pose estimation for different bits and shapes.

Different
Bits & Shapes

Pose Accuracy Pose Jitter
position (mm) rotation (deg) position (mm) rotation (deg)
avg max avg max avg max avg max

3x3, circle 1.073 3.299 0.016 0.048 0.069 0.265 0.080 0.205
3x3, square 0.837 2.780 0.022 0.065 0.085 0.383 0.081 0.276
4x4, circle 0.995 2.867 0.017 0.057 0.058 0.192 0.073 0.272
4x4, square 1.011 3.289 0.019 0.068 0.055 0.173 0.058 0.211

5.7. Occlusion Support

TopoTag can handle occlusion as long as topological
structure is preserved. See the left image of Figure 12 for an
example working under occlusion. We can further incorpo-
rate Hamming distance in tag design to handle occlusions
where topological is no longer maintained by sacrificing
dictionary size. Figure 13 shows an example of working
under occlusion by incorporating Hamming distance of 3,
where dictionary size will decrease from 16384 to 1024.

To handle more severe occlusions,
similar to [1, 20], we can use multiple
tags in a grid to increase the probabil-
ity of seeing complete markers. Other
forms can be also considered. On
right, we show an example of achiev-
ing 360◦-freedom tracking via using
18 TopoTags on a rhombicuboctahedron-shaped object.

6. Conclusions
We present TopoTag, a new topological-based fiducial

marker and detection algorithm that utilizes topological in-
formation to achieve high robustness, achieving perfect de-



tection accuracy on the large dataset we collected and also
datasets from others. We show that all tag bits can en-
code identities without sacrificing detection accuracy, thus
achieving rich identification and scalability. TopoTag offers
more feature correspondences for a better pose estimation.
TopoTag achieves the best performance in localization jitter
and accuracy, and at the same time supports occlusion and
flexible shapes. We also collect a large dataset of TopoTag
and six previous state-of-the-art tags for future evaluation,
involving in-plane and out-of-plane rotations, image blur,
various distances and cluttered background, etc.

References
[1] B. Atcheson, F. Heide, and W. Heidrich. CALTag: High Pre-

cision Fiducial Markers for Camera Calibration. Int. Work-
shop on Vision, Modeling and Visualization (VMV), 2010. 1,
2, 8

[2] R. Bencina and M. Kaltenbrunner. The design and evolution
of fiducials for the reactivision system. In Proceedings of the
Third International Conference on Generative Systems in the
Electronic Arts, 2005. 2

[3] R. Bencina, M. Kaltenbrunner, and S. Jorda. Improved topo-
logical fiducial tracking in the reactivision system. In 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05)-Workshops, pages 99–99.
IEEE, 2005. 2

[4] F. Bergamasco, A. Albarelli, L. Cosmo, E. Rodola, and
A. Torsello. An accurate and robust artificial marker based
on cyclic codes. IEEE transactions on pattern analysis and
machine intelligence, 38(12):2359–2373, 2016. 2

[5] F. Bergamasco, A. Albarelli, E. Rodolà, and A. Torsello.
RUNE-Tag: A high accuracy fiducial marker with strong oc-
clusion resilience. Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 113–120, 2011. 1, 2, 4, 5

[6] F. Bergamasco, A. Albarelli, and A. Torsello. Pi-tag: a fast
image-space marker design based on projective invariants.
Machine vision and applications, 24(6):1295–1310, 2013. 2

[7] L. Calvet, P. Gurdjos, and V. Charvillat. Camera tracking
using concentric circle markers: Paradigms and algorithms.
In 2012 19th IEEE International Conference on Image Pro-
cessing, pages 1361–1364. IEEE, 2012. 2

[8] L. Calvet, P. Gurdjos, C. Griwodz, and S. Gasparini. De-
tection and accurate localization of circular fiducials under
highly challenging conditions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 562–570, 2016. 1, 2, 4

[9] Y. Cho, J. Lee, and U. Neumann. A multi-ring color fiducial
system and an intensity-invariant detection method for scal-
able fiducial-tracking augmented reality. In IWAR, 1998. 1,
2

[10] D. Claus and A. W. Fitzgibbon. Reliable fiducial detection in
natural scenes. In European Conference on Computer Vision,
pages 469–480. Springer, 2004. 2

[11] D. Claus and A. W. Fitzgibbon. Reliable automatic calibra-
tion of a marker-based position tracking system. In 2005

Seventh IEEE Workshops on Applications of Computer Vi-
sion (WACV/MOTION’05)-Volume 1, volume 1, pages 300–
305. IEEE, 2005. 2

[12] E. Costanza. D-touch: A consumer-grade tangible interface
module and musical applications. In Proceedings of Confer-
ence on HumanComputer Interaction, 2003. 2

[13] E. Costanza and J. Robinson. A Region Adjacency Tree Ap-
proach to the Detection and Design of Fiducials. In Video
Vision and Graphics, pages 63–69, 2003. 2

[14] H. Cruz-Hernández and L. G. de la Fraga. A fiducial tag
invariant to rotation, translation, and perspective transforma-
tions. Pattern Recognition, 81:213–223, 2018. 1

[15] V. F. da Camara Neto, D. B. de Mesquita, R. F. Garcia, and
M. F. M. Campos. On the design and evaluation of a precise
scalable fiducial marker framework. In 2010 23rd SIBGRAPI
Conference on Graphics, Patterns and Images, pages 216–
223. IEEE, 2010. 1, 2

[16] J. DeGol, T. Bretl, and D. Hoiem. Chromatag: a colored
marker and fast detection algorithm. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1472–1481, 2017. 1, 2, 3, 4, 5, 6

[17] M. Fiala. Artag, a fiducial marker system using digital tech-
niques. In 2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05), volume 2,
pages 590–596. IEEE, 2005. 1, 2, 3

[18] M. Fiala. Designing highly reliable fiducial markers. IEEE
Transactions on Pattern analysis and machine intelligence,
32(7):1317–1324, 2010. 1

[19] D. Flohr and J. Fischer. A lightweight id-based extension
for marker tracking systems. In Eurographics Symposium
on Virtual Environments (EGVE) Short Paper Proceedings,
pages 59–64, 2007. 1, 2

[20] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas,
and M. J. Marı́n-Jiménez. Automatic generation and detec-
tion of highly reliable fiducial markers under occlusion. Pat-
tern Recognition, 47(6):2280–2292, 2014. 1, 2, 3, 5, 8

[21] S. Garrido-Jurado, R. Munoz-Salinas, F. J. Madrid-Cuevas,
and R. Medina-Carnicer. Generation of fiducial marker dic-
tionaries using mixed integer linear programming. Pattern
Recognition, 51:481–491, 2016. 1, 2, 3

[22] L. B. Gatrell, W. A. Hoff, and C. W. Sklair. Robust image
features: Concentric contrasting circles and their image ex-
traction. In Cooperative Intelligent Robotics in Space II, vol-
ume 1612, pages 235–245. International Society for Optics
and Photonics, 1992. 2

[23] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003. 4

[24] M. Kaltenbrunner and R. Bencina. reactivision: a computer-
vision framework for table-based tangible interaction. In
Proceedings of the 1st international conference on Tangible
and embedded interaction, pages 69–74. ACM, 2007. 2

[25] H. Kato and M. Billinghurst. Marker tracking and hmd cal-
ibration for a video-based augmented reality conferencing
system. In Proceedings 2nd IEEE and ACM International
Workshop on Augmented Reality (IWAR’99), pages 85–94.
IEEE, 1999. 2, 5



[26] C. N. Klokmose, J. B. Kristensen, R. Bagge, and K. Hal-
skov. Bullseye: high-precision fiducial tracking for table-
based tangible interaction. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Sur-
faces, pages 269–278. ACM, 2014. 2

[27] V. A. Knyaz. The development of new coded targets for au-
tomated point identification and non-contact 3d surface mea-
surements. IAPRS, 5:80–85, 1998. 2

[28] V. Lepetit and P. Fua. Keypoint recognition using random-
ized trees. IEEE transactions on pattern analysis and ma-
chine intelligence, 28(9):1465–1479, 2006. 2

[29] D. W. Marquardt. An algorithm for least-squares estimation
of nonlinear parameters. Journal of the society for Industrial
and Applied Mathematics, 11(2):431–441, 1963. 4

[30] J. Molineros and R. Sharma. Real-time tracking of multi-
ple objects using fiducials for augmented reality. Real-Time
Imaging, 7(6):495–506, 2001. 1

[31] L. Naimark and E. Foxlin. Circular data matrix fiducial
system and robust image processing for a wearable vision-
inertial self-tracker. In Proceedings of the 1st International
Symposium on Mixed and Augmented Reality, page 27. IEEE
Computer Society, 2002. 2

[32] E. Olson. Apriltag: A robust and flexible visual fiducial sys-
tem. In 2011 IEEE International Conference on Robotics
and Automation, pages 3400–3407. IEEE, 2011. 1, 2, 3, 4,
6, 8

[33] C. B. Owen, F. Xiao, and P. Middlin. What is the best fidu-
cial? In The First IEEE International Workshop Agumented
Reality Toolkit,, pages 8–pp. IEEE, 2002. 2, 4

[34] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast key-
point recognition using random ferns. IEEE transactions on
pattern analysis and machine intelligence, 32(3):448–461,
2010. 2

[35] M. G. Prasad, S. Chandran, and M. S. Brown. A motion blur
resilient fiducial for quadcopter imaging. In 2015 IEEE Win-
ter Conference on Applications of Computer Vision, pages
254–261. IEEE, 2015. 1, 2

[36] J. Rekimoto. Matrix: A realtime object identification and
registration method for augmented reality. In Proceedings.
3rd Asia Pacific Computer Human Interaction (Cat. No.
98EX110), pages 63–68. IEEE, 1998. 2

[37] J. Rekimoto and Y. Ayatsuka. Cybercode: designing aug-
mented reality environments with visual tags. In Proceed-
ings of DARE 2000 on Designing augmented reality environ-
ments, pages 1–10. ACM, 2000. 2

[38] M. Rohs and B. Gfeller. Using camera-equipped mobile
phones for interacting with real-world objects. Advances in
pervasive computing, 176:265–271, 2004. 2

[39] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-
Carnicer. Speeded up detection of squared fiducial markers.
Image and Vision Computing, 76:38–47, 2018. 1

[40] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. Labelme: a database and web-based tool for image
annotation. International journal of computer vision, 77(1-
3):157–173, 2008. 4, 6

[41] J. Sattar, E. Bourque, P. Giguere, and G. Dudek. Fourier tags:
Smoothly degradable fiducial markers for use in human-

robot interaction. In Fourth Canadian Conference on Com-
puter and Robot Vision (CRV’07), pages 165–174. IEEE,
2007. 2

[42] F. Schweiger, B. Zeisl, P. Georgel, G. Schroth, E. Steinbach,
and N. Navab. Maximum detector response markers for sift
and surf. In Vision, Modeling and Visualization Workshop
(VMV), 2009. 2

[43] K. Tateno, I. Kitahara, and Y. Ohta. A nested marker for
augmented reality. In 2007 IEEE Virtual Reality Conference,
pages 259–262. IEEE, 2007. 2

[44] D. WAGNER. Artoolkitplus for pose tracking on mobile de-
vices. In Proceedings of 12th Computer Vision Winter Work-
shop (CVWW’07), February, 2007. 2, 3, 4, 5

[45] J. Wang and E. Olson. Apriltag 2: Efficient and robust fidu-
cial detection. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4193–4198.
IEEE, 2016. 1, 2, 3, 4, 5, 6

[46] A. Xu and G. Dudek. Fourier tag: A smoothly degradable
fiducial marker system with configurable payload capacity.
In 2011 Canadian Conference on Computer and Robot Vi-
sion, pages 40–47. IEEE, 2011. 2


	1 . Introduction
	2 . Related Work
	3 . TopoTag Design
	4 . TopoTag Detection
	4.1 . 2D Marker Detection
	4.2 . ID Decoding
	4.3 . 3D Pose Estimation

	5 . Results and Discussion
	5.1 . Dataset
	5.2 . Dictionary Size vs. Tracking Distance
	5.3 . Detection Accuracy
	5.4 . Localization Jitter and Accuracy
	5.4.1 Pose Error
	5.4.2 Pose Jitter
	5.4.3 Vertex Jitter

	5.5 . Speed
	5.5.1 Dictionary Computation
	5.5.2 Tag Detection

	5.6 . Flexible Shape Support
	5.7 . Occlusion Support

	6 . Conclusions

